
Goin
g from

Pyth
on

to Guile
Sch

em
e

Going from Python to Guile Scheme

a nat
ura

l pro
gre

ssio
n

Arne Babenhauserheide

June 7, 2015

3

After 6 years of intense Python-
Programming, I am starting into
Guile Scheme. And against my
expectations, I feel at home.

i

For my love
who endured my long nights in front of the computer

my children
who give me the strength to keep going every day

my roleplaying group
which keeps my mind alive

my friendly collegues at the institute
whom I helped with Python

and all the Free Software and Free Culture Hackers
who make our world a better place.

The title image is built on Green Tree Python from Michael
Gil, licensed under the creativecommons attribution license, and
Guile GNU Goatee from Martin Grabmüller, licensed under
GPLv3 or later. It follows the time-honored tradition of ignoring
the real history of the name Python because I like snakes.

This book is licensed as copyleft free culture under the GPLv3
or later. Except for the title image, it is copyright (c) 2014–2015
Arne Babenhauserheide.

https://www.flickr.com/photos/msvg/4533044418/
https://creativecommons.org/licenses/by/2.0/
https://www.gnu.org/software/guile/graphics/
http://gnu.org/l/gpl
http://copyleft.org
http://freedomdefined.org
http://gnu.org/l/gpl
http://gnu.org/l/gpl

Contents

Contents ii

I My story 1

1 Into Python 3

2 And beyond 5

II Python 7

3 The Strengths of Python 9
3.1 Pseudocode which runs 9
3.2 One way to do it 10
3.3 Hackable, but painfully 11
3.4 Batteries and Bindings 13
3.5 Scales up . 13

ii

CONTENTS iii

4 Limitations of Python 15
4.1 The warped mind 15
4.2 Templates condemn a language 16
4.3 Python syntax reached its limits 17
4.4 Complexity is on the rise 19
4.5 Time to free myself 21

IIIGuile Scheme 23

5 Starting into Guile Scheme 25

6 But the (parens)! 29

7 Summary 33

8 Comparing Guile Scheme to the Strengths of
Python 35
8.1 Pseudocode . 36

General Pseudocode 36
Consistency . 37
Pseudocode with loops 40
Summary . 44

8.2 One way to do it? 45
8.3 Planned Hackablility, but hard to discover. 52

Accessing variables inside modules 53
Runtime Self-Introspection 54
freedom: changing the syntax is the same as reg-

ular programming 62

iv CONTENTS

Discovering starting points for hacking 64
8.4 Batteries and Bindings: FFI 65
8.5 Does it scale up? 67

Positional arguments and keyword arguments . . 68
Different ways to import modules 70
identifier-syntax: getters and setters for variables 72
Adapting the syntax to the problem 72
Good practice is needed! (but not enforced) . . . 74

8.6 Summary . 74

9 Guile Scheme Shortcomings 77
9.1 creating languages and solving problems 77
9.2 car and cdr: Implementation details in the language 78
9.3 Inconsistency, overhead, duplication 82
9.4 A common standard moves more slowly 84
9.5 Distributing to OSX and Windows 85
9.6 Summary . 86

10 Guile beyond Python 89
10.1 Recursion . 90
10.2 Exact Math . 92
10.3 Real Threads! . 94
10.4 Programming the syntax and embedded domain

specific languages 95
10.5 New Readers: Create languages with completely

different syntax 97
Multi-Language interface definitions 97
Developing new programming languages 99

10.6 Your own object oriented programming system . 100

CONTENTS v

10.7 Continuations and prompts 101
10.8 Summary . 102

IVConclusions 105

11 Guile Scheme is coming back 107

V Appendix 111

A See also 113
A.1 Tools, Projects, Articles 113
A.2 Recommended Reading 113

B Glossary 115

C Solution Map 117
C.1 File as Module and Script 117
C.2 Output a datastructure to console to put it in the

interpreter . 118
C.3 help in interpreter 119
C.4 Profiling . 119

Part I

My story

1

Chapter 1

Into Python

When I was still at school, I learned HTML and CSS. I was
delighted: I could tell the computer to follow my orders. I was
so happy that I even wrote text directly in HTML. It was a
horrible syntax, but it worked. And I did not know better.

Later in my school-life I started with Java to contribute to a
program. It felt bloated and wrong - even compared to HTML. I
never learned to really program in it. When I went to university,
I took a course on C. The hardest challenge in the first lessons
was the syntax. I stopped halfway through the course because I
learned more by asking my flatmate than from the course (thanks
RK!).

A few months later I learned about Python, and it worked
at the first glance. I felt at home.

3

Chapter 2

And beyond

It’s now 6-7 years since I wrote my first lines of Python, and
I’ve been hacking on Python-projects ever since (and did my
Diploma-Thesis in a mix of Python, template-heavy C++ and
R, but that’s a story for another day).

In Summer 2013 I then read The White Belt in the book
Apprenticeship Patterns:1

You are struggling to learn new things and it seems
somehow harder than it was before to acquire new
skills. The pace of your self-education seems to be

1The book Apprenticeship Patterns applies the idea of patterns to
personal development. It has been licensed under a Creative Commons
License, though the O’Reilly page does not state that anymore. You can find
the book in the chimera labs: http://chimera.labs.oreilly.com/books/
1234000001813/index.html

5

http://chimera.labs.oreilly.com/books/1234000001813/ch02.html#the_white_belt
http://chimera.labs.oreilly.com/books/1234000001813/index.html
http://chimera.labs.oreilly.com/books/1234000001813/index.html

6 CHAPTER 2. AND BEYOND

slowing down despite your best efforts. You fear that
your personal development may have stalled.

I felt a pang of recognition.
I have grown so familiar with Python that the challenges I

face at my PhD no longer require me to dig deeper with it. I
mostly recreate solutions I already used for something else. So I
decided to take a leap and learn something completely different. I
chose Guile Scheme, because it provides its own sense of elegance
and challenged my existing notions of programming.

To my surprise it felt strangely natural, so much so, that
I wanted to share my experience. Where Python was my first
home, nowadays it feels like Guile Scheme could become a second
home for me.

If you want to use Guile Scheme, also have a look at Guile
Basics2 which answers some of the questions I faced when starting
my dive into Scheme.

2Guile Basics collects some of the solutions I found when searching my
way into GNU Guile. It is no book but rather a loose and unstructured
hybrid, somewhere between a FAQ and a series of blog posts: http://
draketo.de/proj/guile-basics/

http://gnu.org/s/guile
http://draketo.de/proj/guile-basics/
http://draketo.de/proj/guile-basics/
http://draketo.de/proj/guile-basics/
http://draketo.de/proj/guile-basics/

Part II

Python

7

Chapter 3

The Strengths of Python

To understand new experience, we need to know where we are.
So, before I go into my experience with Scheme, let’s start with
Python.

Pseudocode with one right way to do it and hackable,
scalable batteries.

3.1 Pseudocode which runs

Python is rightfully known as pseudocode which actually runs.
You can give a book-author a (simple) Python script and he or
she will understand what it does without much explanation:

1 for address in addresses:
2 print address

9

10 CHAPTER 3. THE STRENGTHS OF PYTHON

But this is only part of what makes it special.

3.2 One way to do it

Python is a language where I can teach a handful of
APIs and cause people to learn most of the language
as a whole. — Raymond Hettinger (2011-06-20)

The simplicity of learning Python illustrated by this quote is
enhanced by one of the pillars of the philosophy of Python:

There should be one – and preferably only one – ob-
vious way to do it.

This philosophy, among others, is enshrined in the Zen of
Python, also know as pep-20, easily called up in the Python
interpreter by invoking:

1 import this

Following the Zen of Python creates nicely usable APIs and
minimizes guesswork - and when you have to guess, you are
right most of the time. Since most Python developers follow
this philosophy, Python is a really nice language for facing real-
life challenges: It provides only the functions needed to solve
problems, with great default options, a strong focus on the
actual tasks and polished so deeply that its different aspects
merge together into one consistent whole.

It is a minimal ontology which encodes the most common
operations in readily understandable wording, designed in a way

http://youtu.be/u1sVfGEBKWQ
http://www.python.org/dev/peps/pep-0020/
http://www.python.org/dev/peps/pep-0020/

3.3. HACKABLE, BUT PAINFULLY 11

which provides a clearly distinguishable canonical way to tackle
a problem. A wonderful user-interface.

Together with looking like pseudocode, this makes Python
a good choice for beginning programmers. In my first years of
programming I thought that I’d never need anything else.

3.3 Hackable, but painfully

In all this simplicity, Python provides access to its inner workings.
It allows you to do all the crazy things you need to do at times
to solve problems.

Almost every aspect of its functionality is explicitly exposed
at runtime in dictionaries. This provides for great introspection -
and enables features like doctests - the most intuitive way I ever
saw to test simple functions:

1 def hello():
2 """Greet the World.
3

4 >>> hello()
5 Hello World!
6 """
7 print "Hello World!"

You can create classes whose instances can be executed by
adding a __call__ method, and change the effect of mathemat-
ical operators by redefining the __add__ method, and you can
fiddle with the local bindings in your namespace and much more.

And if you need to get really nasty, there are always eval
and exec to run self-generated code. I only had reason to use
that one single time, but there it really worked out - and became

12 CHAPTER 3. THE STRENGTHS OF PYTHON

completely unmaintainable. Luckily it was a one-shot script. I
only had to change it once after the initial creation. In hindsight
using exec was lot’s of fun - and I hope I won’t have to ever do
it again.

While Python offers the possibilities, all this hacking feels
hindered, as if the language provided resistance at every step.

For example, if you want to find the file in which a given
function is defined, you can do it like this:

1 # preparation: Get a function without context
2 from math import log
3 # get the module name
4 modulename = log.__module__
5 # import the module
6 mod = __import__(modulename)
7 # get the filename. Use dir(mod) to find out what you can do.
8 # Or use tab-completion in the python-shell
9 # (if you enabled readline - if you did not:

10 # Best enable readline right now!)
11 filename = mod.__file__
12 print filename
13 # here this gives /usr/lib64/python2.7/lib-dynload/math.so

This is not what I would call elegant.
And I think that is intentional: Make the canonical way

easier than other ways, but allow using other ways if someone
really wants to.

Despite the verbosity and despite the double underscores
screaming “do not touch this!”, the discoverability is very good,
because we can get all these options with dir() or tab-completion.
Just explore to find out about the hidden tricks you could use.

3.4. BATTERIES AND BINDINGS 13

3.4 Batteries and Bindings

Most of the time, you do not need to go to such extremes, though.
Any standard Python installation already includes solutions for
most problems you need to tackle in normal programming tasks,
and there are bindings to almost every library under the sun.

1 import antigravity

Most of these libraries are really well-done and modern, like
matplotlib. And tools like cython make it very easy to write
bindings - as well as extensions which compile as C-code and get
all the performance you can wish for. The best program to do
a job is one which already ships the solution. By that metric
Python is a very good fit for most jobs nowadays.

Together with hackability this makes Python a good and
“pragmatic” choice for experienced programmers.

Most of this is a product of hackability, searching for the
canonical “pythonic” way to solve a problem and popularity, but
it is still driven by the choice to provide these batteries and make
it easy to use them.

3.5 Scales up

And finally, Python actually scales up from simple scripts to
complex frameworks.

• Namespaces cleanly separate imported code by default,

• modules make code reusable by default,

14 CHAPTER 3. THE STRENGTHS OF PYTHON

• on-demand-import hacks minimize the loading cost of huge
frameworks,

• properties allow starting with simple attributes which can
use getters and setters later on without breaking the exposed
API, and

• positional arguments which double as keyword-arguments
make it easy to keep functions manageable without breaking
the exposed API when their argument-list starts to grow.

Together with the other strengths, its scalability makes
Python a very nice tool which accompanies you from your first
tentative steps into programming up to highly productive pro-
fessional work.

Chapter 4

Limitations of Python

With all its strengths, Python is still a language with a limited
syntax. It is very broadly applicable, but it has strict rules
how things can be done. These rules create a straightjacket you
cannot escape easily. Most of the time, they are convenient,
and they can help when you develop code in a community. But
regardless of the chains you choose, they can never be convenient
for all tasks. And whatever the task, when you go deep enough,
even golden chains hurt.

4.1 The warped mind

“You must unlearn what you have learned.” — Yoda
in “The Empire Strikes Back“

15

16 CHAPTER 4. LIMITATIONS OF PYTHON

If a programming language warps your mind, that manifests
itself in limited imagination: When you tackle a problem, you
think in the syntax of that language, and if that syntax cannot
express something in a convenient way, you have a hard time
even imagining that the solution could be easy.

Different from C++ and Git, Python only starts warping
your mind very late in the game. But when it does so, it still
hurts.

And hacking the syntax of Python is a task which is very
distinct from general Python programming, so you cannot easily
escape its chains.

On another front you could say that Python is the worst of
mind warpers: It makes you think that source code can be easy
to read and understand and versatile at the same time. And it
is right, though it does not itself reach that goal completely. It
set an important upper limit for acceptable unintelligibility: If a
language is too painful, people will just use Python instead.

4.2 Templates condemn a language

1 if __name__ == "__main__":
2 # run the script

I really started feeling the limitations of Python when I had
to write certain phrases over and over again. It requires quite
a bit of ceremony1 for regularly needed tasks. When you start

1Ceremony describes actions without information content which are
needed only to fulfil the requirements of your tool.

4.3. PYTHON SYNTAX REACHED ITS LIMITS 17

thinking about using code-templates in your editor to comply
with the requirements of your language, then it is likely that
something is wrong with the language.

A programming language is an interface between humans
and the computer. If you need a tool to use the language, then
it does not do its job.2

Though Python works pretty long with the basic indentation-
support which also helps when writing prose, some of its long-
winded phrases begin to really disrupt work. And a Python-
Programmer cannot escape them.

4.3 Python syntax reached its limits

“Why, I feel all thin, sort of stretched if you know
what I mean: like butter that has been scraped over
too much bread.” — Bilbo Baggins (the Lord of the
Rings from J.R.R. Tolkien)

I find myself seeing constructs in Python-code as hacky
workarounds which I previously accepted as “how programming
works”. I now look at this:

2This statement is a bit too general: A programming language actually is
the interface between the programmer, the computer and other programmers
- including the later self of the original programmer. Sometimes a bit of
syntax-overhead can improve readability at the expense of convenience for
the initial creation of the code. For those cases, templates can actually make
sense. But this is not the case for __name__ == "__main__" and similar
kludges in Python. If you want to dive into these issues, then you should
start with prose or math: Text written by humans for humans, without a
computer in the mix.

18 CHAPTER 4. LIMITATIONS OF PYTHON

1 if x:
2 a = 1
3 else:
4 a = 2

and I hate the fact, that I cannot just say
1 a = if(x 1 2)

Though I can actually do something similar since Python 2.5
(PEP-308), but it is written like this:

1 a = 1 if x else 2

And that just looks alien. It does not feel like Python.
But with Python-syntax, the only better solution is adding
parentheses to make it look like a generator expression and
as such very different from other Python-code (this is what
Guido van Rossum recommends,3 but in real-life I see people
recommend the previous version):

1 a = (1 if x else 2)

3“The decision was made to not require parentheses in the Python
language’s grammar, but as a matter of style I think you should always use
them” — Description of PEP 308 in the release notes of Python 2.5. In my
opinion this is a case where Python would have benefitted from requiring
more parens. But then it would have shown much more clearly that the
new syntax is essentially a different language style merged into Python. But
still, do listen when your elected BDFL speaks. Use parens around inline
if-else.

http://docs.python.org/2/whatsnew/2.5.html#pep-308
http://docs.python.org/2/whatsnew/2.5.html#pep-308
http://docs.python.org/2/whatsnew/2.5.html##pep-308

4.4. COMPLEXITY IS ON THE RISE 19

This isn’t the simpe Python syntax anymore. The uniformity
of the syntax is broken. And this is not necessary for a program-
ming language. For example with Scheme, where all code is just
a tree of evaluated expressions, I can write the following - and it
looks the same as all other code:

1 (define a (if x 1 2))

This might seem useless, but I am currently hitting code
which needs it all the time. For example here (real code):

1 direction = [(math.atan(v[1]/u[1])
2 if ((v[1]*u[1] > 0) and not v[1] < 0) else
3 -math.atan(v[1]/u[1]))
4 for u, v in zip(mfu, mfv)]

The new syntax additions to Python feel like Python syntax
is already stretched to its limit. It is expanding into generator-
expressions and list-comprehensions, because its “natural” syntax
is breaking down with the new features people wish for (at least
that’s how it looks to me).

4.4 Complexity is on the rise

This expansion into non-Pythonic territory does not stop at the
syntax, though. When I started learning Scheme, I read an
article by Michele Simionato on compile time vs. runtime in
Scheme. I thought “Luckily I don’t have to worry about that in
Python” – and just a few weeks later I stumbled over strange
breakage of my Python function cache decorator.

http://www.phyast.pitt.edu/~micheles/scheme/scheme21.html
http://www.phyast.pitt.edu/~micheles/scheme/scheme21.html

20 CHAPTER 4. LIMITATIONS OF PYTHON

It turned out that the simple act of adding function decorator
syntax introduced all the complexities of separating compile time
vs. runtime functionality into Python. The extent of this change
can be shown in a few lines of code:

1 def deco(fun):
2 return mun
3

4 @deco
5 def mun():
6 print ("Welcome to compile-time breakage!")
7

8 def mun():
9 print ("We have to introduce a proxy.")

10

11 @deco
12 def proxy():
13 pass

When this code tries do define the decorated mun() func-
tion, it fails with NameError: global name ’mun’ is not
defined. The reason is as simple as horrifying: The decora-
tor @deco forces the function deco to run while mun is being
defined, and the deco function requires access to the mun function
during execution. This breaks the assumption that functions
can use not yet defined functions as long as the execution of
these functions happens later. It brings new import-conflicts
and and increases the depth of understanding you need to be
able to anticipate how a given piece of code will behave.

This change, along with generator expressions and a few
other features, strongly increased the complexity of the language
without giving its users all the benefits which are available in

4.5. TIME TO FREE MYSELF 21

languages which were designed from first principles to provide
these features. Looking at this, it seems like the experiment
which Guido van Rossum dared with Python failed to some
degree:

“Python is an experiment in how much freedom pro-
grammers need. Too much freedom and nobody can
read another’s code; too little and expressiveness is
endangered.” — (Guido van Rossum, 1996-08-13)

There clearly is a need for more complex functionality among
Python programmers – its limitations are perceptible – and in
trying to fulfill this need, Python stretched syntactically and
conceptually, and keeps stretching, but its limits already come
into view. As it is pushed over the limitations of its design, the
complexity of Python explodes and increases the cost of all future
additions. This makes it unlikely that Python can overcome its
limitations without losing the strengths which made it an ideal
tool to start programming.

4.5 Time to free myself

And this brings us back to The White Belt from Apprenticeship
patterns, this time in longer form:

“You have developed a deep understanding of your
first language and are walking comfortably on a
plateau of competence. [. . . but. . .] You are struggling
to learn new things and it seems somehow harder than

http://chimera.labs.oreilly.com/books/1234000001813/ch02.html#the_white_belt

22 CHAPTER 4. LIMITATIONS OF PYTHON

it was before to acquire new skills. The pace of your
self-education seems to be slowing down despite your
best efforts. You fear that your personal development
may have stalled.”

I tried every trick with Python - from very clean, automatic
documentation up to runtime code-generation. And now I hit a
wall: Its limitations do not allow me to move onward.

Python accompanies you on your road from beginner to
experienced programmer, but no further. I learned a lot about
structuring information by programming in Python. I learned
that programs can be easy to read and understand for newcomers.
And I learned about the importance of having identifiers whose
names in themselves form a well-defined and optimized language.
But it is time to free myself from its shackles.

Part III

Guile Scheme

23

Chapter 5

Starting into Guile Scheme

So I started looking into other programming languages. I had
two main contenders:

• Fortran, the tried and true tool for engineers, and

• Scheme, the academic branch of the Lisps.

I started with Fortran as the pragmanic choice for a physicist,
but soon I caught myself replicating every Fortran-experiment
in Scheme. So I decided to follow my gut and dive into Scheme.
From there on, the choice was easy: There are several Scheme
implementations - and one of them is from the GNU Project:

25

http://gnu.org

26 CHAPTER 5. STARTING INTO GUILE SCHEME

Guile.1, 2 But before really starting with that, I read The Adven-
tures of a Pythonista in Schemeland (PDF) by Michele Simion-
ato.

It is half a year later, and Scheme now feels natural to me.
Actually more natural than Python.

The expressiveness of the original syntax of Python was a bit
too limited, and this caused the language to hatch a new syntax
which makes the whole of Python much more complex - there
is no longer a simple uniform syntax, but two complementary
styles with different structures. It is still very easy to understand
and I think that it set a new standard for readability of code - so
in that aspect the Python experiment was a phenomenal success
- but it is starting to break down as people expand it into more
and more directions.

1Aside from Guile, there are lots of other Scheme implementations.
Using the posting rates to mailing lists as a rough estimate of activity,
Racket (user, devel), PLT (devel, plt) and Guile (user, devel) are roughly
on the same level of activity of 5 to 10 messages per day while all the other
Schemes are at least factor 2 below that. So from estimating activity, Guile
looks like a sane choice. But to set this into perspective: The combined
posting rate of these three most active Scheme lists together only approaches
the posting rate of clojure, python-devel (without counting all the other
python-lists) or javascript v8 devel alone. So if you’re looking for pure
activity, Scheme might not be the most obvious choice. But then, I did not
find my way to Guile Scheme by searching for the most popular language. I
found it while searching for ways to go beyond the limits of the languages I
knew.

2The opinionated guide to scheme implementations from
Andy Wingo provides an overview of the wealth of Scheme
implementations: http://wingolog.org/archives/2013/01/07/
an-opinionated-guide-to-scheme-implementations

http://gnu.org/s/guile
http://www.phyast.pitt.edu/~micheles/scheme/
http://www.phyast.pitt.edu/~micheles/scheme/
http://www.phyast.pitt.edu/~micheles/scheme/TheAdventuresofaPythonistainSchemeland.pdf
http://dir.gmane.org/gmane.comp.lang.racket.user
http://dir.gmane.org/gmane.comp.lang.racket.devel
http://dir.gmane.org/gmane.lisp.scheme.plt.devel
http://dir.gmane.org/gmane.lisp.scheme.plt
http://dir.gmane.org/gmane.lisp.guile.user
http://dir.gmane.org/gmane.lisp.guile.devel
http://dir.gmane.org/gmane.comp.java.clojure.user
http://dir.gmane.org/gmane.comp.python.devel
http://gmane.org/find.php?list=python
http://gmane.org/find.php?list=python
http://dir.gmane.org/gmane.comp.lang.javascript.v8.devel
http://wingolog.org/archives/2013/01/07/an-opinionated-guide-to-scheme-implementations
http://wingolog.org/archives/2013/01/07/an-opinionated-guide-to-scheme-implementations

27

Guile Scheme on the other hand can accomodate new func-
tionality much more easily. And from the intuitive side, I now see
commas between function arguments and they feel like needless
bloat. My stomach suddenly says “leave out the commas!”, and I
find myself forgetting them in Python-code. I think the commas
once looked useful to me, because languages with commas helped
me get rid of the quoting hassles in the shell, but now there’s a
language which does not require commas to achieve that goal.

Chapter 6

But the (parens)!

LISP: Lots of Irritating Superfluous Parentheses. —
popular skit.

Lisps have long been criticised for their use of parentheses.
And rightly so.

Yes, the parens are horrible. I no longer see them as strongly
as when I started (they faded a bit into the background), but I
still remember how they horrified me when I began hacking my
Emacs config - and even when I started with Guile.

1 (for
2 ((beginners (readability of parens))
3 (is horrible)))

This becomes worse with bigger code examples - with often
5 or 6 parens closed at the end of a function. The moment your

29

30 CHAPTER 6. BUT THE (PARENS)!

examples get bigger than the ones in the first 90% of The Little
Schemer, it becomes hard to keep track of the parens without
strong support from your editor.

So I started contributing to a fix. At first I joined read-
able (nowadays known as SRFI-110). But when the readable-
developers added syntax using $, \\ and <* *>, readable lost me.
It had left the path of the minimalist elegance which fascinates
me in lisp. Therefore I began to work on a simpler solution.

That solution is wisp: A whitespace-to-lisp preprocessor.
Wisp is currently in draft phase as Scheme Request For

Implementation: SRFI-119.1
The previous code-block with parens was indented in the

canonical way for lisp. If you write the same code-block without
parens and add some syntax for double- and inline-parens, wisp
can transform it into full-fledged scheme which you can then
run:

1 for
2 : beginners : readability of parens
3 is horrible

Wisp uses the minimum indentation-sensitive syntax which
can represent arbitrary lisp-structures and is implemented in
Wisp itself. With this, the readability is not yet quite on the
level of Python, but it is getting close - at least close enough for
me.

1For some more background why I took the step to create Wisp instead
of using readable, see my presentation Why Wisp?: http://draketo.de/
proj/wisp/why-wisp.html

http://readable.sf.net
http://readable.sf.net
http://draketo.de/proj/wisp
http://srfi.schemers.org/srfi-119/srfi-119.html
http://draketo.de/proj/wisp/why-wisp.html
http://draketo.de/proj/wisp/why-wisp.html
http://draketo.de/proj/wisp/why-wisp.html

31

For Wisp I started with an analysis of what indentation-
sensitive syntax means, and interestingly I now find ways to
write more elegant code in that syntax - ways I did not think
about when I defined wisp. I am still learning how to write nice
wisp-code, and I think that is a good sign: The syntax brings
its own “natural” style.

Thanks to the flexibility of GNU Guile, you can even use
Wisp in the interactive console (implemented with help from
Mark H. Weaver and others from #guile on irc.freenode.net!).
Just get Wisp and run

1 ./configure; make check;
2 guile -L . --language=wisp

After having a fix for the most pressing problem I see in
Guile Scheme (the parens kill newcomers), I could proceed to
testing how Guile Scheme with Wisp compares to Python - and
as you’ll guess, you read this book, because Guile Scheme did
remarkably well.

http://webchat.freenode.net?randomnick=1&channels=%23guile&uio=OT10cnVlJjEyPXRydWU62
http://draketo.de/proj/wisp

Chapter 7

Summary

We saw how complexities creeped into Python, which was written
with the expressed goal to be more limited than Lisps, making
it one more example of Philip Greenspuns 10th Rule:

Every sufficiently complex application/language/tool
will either have to use Lisp or reinvent it the hard
way. — Generalization of Philip Greenspuns 10th
Rule

In contrast, after some time of getting used to it and finding
a fix for the parens, Scheme now feels really natural for me.

And with that, I can go on and compare Guile Scheme to the
strengths of Python. We will pit Guile Scheme against Python
in the areas where Python rules the place and see how Guile
Scheme fares.

33

http://c2.com/cgi/wiki?GreenspunsTenthRuleOfProgramming
http://c2.com/cgi/wiki?GreenspunsTenthRuleOfProgramming
http://c2.com/cgi/wiki?GreenspunsTenthRuleOfProgramming

Chapter 8

Comparing Guile Scheme to
the Strengths of Python

After having listed the many strengths of Python, it’s time for a
very unfair comparison: How does Guile Scheme stand against
the strongest aspects of Python?

I ask this, because it is what Python-Programmers will ask -
and because it is what I asked myself when looking into Guile
Scheme.

Later we will see where Guile Scheme enables us to go beyond
Python. But now, enjoy the unfair race!

35

36
CHAPTER 8. COMPARING GUILE SCHEME TO THE

STRENGTHS OF PYTHON

8.1 Pseudocode

We showed that Python is rightfully known as "Pseudocode
which actually runs".

Using the indentation sensitive syntax of Wisp, Guile Scheme
also comes close to runnable pseudocode. Maybe even closer
than Python.

General Pseudocode

The following shows Guile Scheme code using the Wisp-reader to
leave out most parentheses. It realizes the well-known FizzBuzz
game which is used in the English Wikipedia as an example for
pseudocode. And different from the Wikipedia-examples, the
code here actually runs.

http://en.wikipedia.org/wiki/Pseudocode#Syntax
http://en.wikipedia.org/wiki/Pseudocode#Syntax

8.1. PSEUDOCODE 37

1 ;; this example needs foof-loop installed via guildhall!
2 ;; see https://github.com/ijp/guildhall/wiki/Getting-Started
3 use-modules : guildhall ext foof-loop
4

5 ;; Pseudocode adapted from
6 ;; http://en.wikipedia.org/wiki/Pseudocode#Syntax
7 define : divisible? number divisor
8 = 0 : remainder number divisor
9

10 define : fizzbuzz
11 let : : print_number #f
12 loop : : for i : up-from 1 : to 100
13 set! print_number #t
14 when : divisible? i 3
15 display "Fizz"
16 set! print_number #f
17 when : divisible? i 5
18 display "Buzz"
19 set! print_number #f
20 when print_number
21 display i
22 newline
23

24 fizzbuzz

I did not expect to find such simple pseudo-code in another
language than Python, but Scheme actually provides it.

Consistency

Similarly, consistency of code is generally considered as one of
the huge strengths of Python, a strength which gives normal
code the readability of pseudocode: When you know one Python-

38
CHAPTER 8. COMPARING GUILE SCHEME TO THE

STRENGTHS OF PYTHON

program, you can find the patterns used there in all future
Python-programs you read.

Modern Python however offers a kind of dual syntax. The
first, simple syntax provides indentation-sensitive control flow,
declarative data-definition and function calls:

1 for i in [1, 2, 3, 4]:
2 if i >= 4:
3 continue
4 def counter():
5 if i != 2:
6 for j in range(i):
7 yield j
8 print list(counter())

And then there are generator-expressions, the second syntax:
1 for k in (range(i)
2 if i != 2 else []
3 for i in [1, 2, 3, 4]
4 if i < 4):
5 print k

Both of these expressions are valid Python, and they yield the
same result, but in the tutorials I saw over the years, newcomers
mostly learn the first style, not the second - and the first style is
the original Python-syntax. When you see that second syntax
in raw form, it looks really bolted-on and the parentheses only
barely contain how alien it is to the original python:

1 a = 1
2 b = 1 if a != 1 else 2
3 c = (1 if b > 2 else 3)

8.1. PSEUDOCODE 39

And here Guile Scheme can go a step further towards consis-
tency.

The addition of generator-expressions to Python essentially
creates two completely different languages mixed into one. And
I expect to see huge battles between these two syntactic forms
in the coming years.

In contrast, Scheme provides one single syntax: The function-
call with parameters and a return value. And the symbol-binding
let-syntax is quite close to the generator-style in the Python-
example:

1 use-modules : guildhall ext foof-loop
2

3 loop : : for i : in-list ’(1 2 3 4)
4 if {i < 4}
5 let : : k : cond ((not {i = 2}) (iota i)
6 (else ’()))
7 display k

But different from Python, this is the default syntax in
Scheme. A common theme between both is that the outer
code uses indentation (in Scheme via Wisp) while the inner
code uses parentheses. There is also some degree of duality in
this Scheme example, but in Python the inner code structure
works differently than the outer code while in Scheme the only
change is that the code switches to using parentheses instead of
indentation to mark scope. You could use indentation for the
inner part, too, but that would look more busy, and parentheses
everywhere would be harder to read for most people (though
it would look more uniform), so I think that there is value in
having to complementary ways to format your code. Both ways

40
CHAPTER 8. COMPARING GUILE SCHEME TO THE

STRENGTHS OF PYTHON

should use a consistent structure, and Python does not achieve
that while Scheme does so easily.

And it is possible to get even closer to the generator-example
in Python without breaking the basic syntax by using the syntax-
adjustment capabilities Scheme provides for its users.

It misses the kind of polish which went into Python and which
has the effect that after some time the generator expressions in
Python look neat instead of completely alien. But the foundation
of Scheme is much stronger: It can express both styles in the
same structure.

So let’s use this strong position to look at something which
appears to be a sore spot at first:

Pseudocode with loops

When starting to look into loops in Guile Scheme, my initial
impression was bleak. But when I looked deeper into it, that
impression changed: The looping constructs in basic scheme are
pretty limited, but it has many syntax extensions which make
looping enjoyable.

Let’s first start with my initial impression of basic scheme.
This is what newcomers will see (at the current state of the
documentation).1

1Hint: if you write a tutorial on Scheme, do NOT start with do-loops.
Rather start with let-recursion and simple usages of SRFI-42 and foof-loop.
But please don’t reference their documentation documents as if they were
tutorials. That would be a very rough start.

8.1. PSEUDOCODE 41

Initial impression

Scheme canonically only supports do-loops, while-loops and let-
recursion, so loops look like the following:

Do The basic loop, similar to a for-loop in C.
1 do : : i 1 : 1+ i
2 : > i 4
3 display i

Note: Almost no schemer uses this.

While Looping with while is sometimes seen, but similar to
do-loops mostly superceded by more elegant constructs.

1 let : : i 1
2 while : < i 5
3 display i
4 set! i : 1+ i

Let-recursion Also called named let: looping via explicit
recursion. Among other possibilities, let-recursion can easily be
used instead of do or while loops.

1 let loop
2 : i 1 ; the initial value
3 when : < i 5
4 display i
5 loop : 1+ i

Even though let-recursion is a great tool, it has quite a bit
of overhead for simple loops, and it requires shifting the mental

42
CHAPTER 8. COMPARING GUILE SCHEME TO THE

STRENGTHS OF PYTHON

model towards recursion. But as soon as the loop gets more
complex than two or three lines, this overhead fades.

Intuitive? These constructs are not really what I consider
intuitive, but they are easy and not really bad. A looping
construct I would consider as intuitive would be something like
this:

1 for : i in ’(1 5 8)
2 display i

(you can do that with a macro - people do: see the next
chapter!)

On the other hand, I experienced let-recursion to be much
easier to debug and than any other kind of loop - so much easier,
that I wrote an article about the elegance of let-recursion (in
german).2

And for this gain, I accept the slight loss in readability:
1 let loop
2 : l ’(1 5 8)
3 when : not : null? l
4 display : car l ; first element
5 loop : cdr l ; continue with rest

I can’t deny, though, that standard scheme-loops are still a
long way from python - especially in list-comprehensions:

2When I realized that let-recursion provides the simplest possible model
for recursive code with initialization of the recursion start, I wrote an
article about my experience: http://draketo.de/licht/freie-software/
let-rekursion (in german)

http://draketo.de/licht/freie-software/let-rekursion
http://draketo.de/licht/freie-software/let-rekursion
http://draketo.de/licht/freie-software/let-rekursion

8.1. PSEUDOCODE 43

1 names = [name for id,name in results]

But the flexibility of scheme-syntax would definitely allow
defining something which looks like the following:

1 define names : list-comp name for (id name) in results

And I’m pretty sure that somewhere out there someone
already defined a list-comp macro which does exactly that. Let’s
see. . .

Great Looping Constructs in Guile Scheme

. . . and one question on IRC later (#guile @ irc.freenode.net)3 I
learned that I was right: SRFI-42 (eager comprehensions) offers
list-comprehension while foof-loop provides the loop-macro.

SRFI-42 SRFI-42 allows using the compact representation
from Pythons list-comprehensions:

1 use-modules : srfi srfi-42
2 list-ec (:range i 5) i ; [i for i in range(5)]
3 ; => (0 1 2 3 4)

3To get instant contact with the guile developers, visit the freenode
IRC webchat: http://webchat.freenode.net?randomnick=1&channels=
%23guile

http://webchat.freenode.net?randomnick=1&channels=%23guile
http://srfi.schemers.org/srfi-42/srfi-42.html
http://mumble.net/~campbell/scheme/foof-loop.txt
http://webchat.freenode.net?randomnick=1&channels=%23guile
http://webchat.freenode.net?randomnick=1&channels=%23guile

44
CHAPTER 8. COMPARING GUILE SCHEME TO THE

STRENGTHS OF PYTHON

foof-loop and foof-loop4 gives powerful looping, which starts
simple

1 ;; this example needs foof-loop installed via guildhall!
2 ;; see https://github.com/ijp/guildhall/wiki/Getting-Started
3 loop : : for element (in-list list)
4 write element
5 newline

and becomes very, very powerful:
1 ;; this example needs foof-loop installed via guildhall!
2 ;; see https://github.com/ijp/guildhall/wiki/Getting-Started
3 loop
4 : for x : in-list ’(1 2 3)
5 with y 0 {y + {x * 2}}
6 . => y

apply/fold/map In addition to providing these explicit loop-
ing constructs, Scheme developers are far more likely to use
functions like apply, fold and map for the same effect, often with
an anonymous (lambda) function which replaces the loop body.

Summary

Guile Scheme with syntax extensions does not have to look up to
Python when it comes to pseudocode. Scheme code can be very
elegant, readable and intuitive. With the right extensions that

4To get foof-loop for guile, you need to first install guildhall, a package
manager for guile. See Getting Started for a short tutorial: https://github.
com/ijp/guildhall/wiki/Getting-Started

https://github.com/ijp/guildhall/wiki/Getting-Started
https://github.com/ijp/guildhall/wiki/Getting-Started
https://github.com/ijp/guildhall/wiki/Getting-Started

8.2. ONE WAY TO DO IT? 45

even holds for loops. And both foof-loop and srfi-42 are more
powerful looping-constructs than the default in Python. For
example list-ec (:real-range i 0 5 0.1) i is equivalent
to the numpy-enhanced range-function. And despite that power,
their code looks almost as intuitive as Python-code.5

But they also come with lots of additional ways solve a
problem. Which brings us to the next topic.

8.2 One way to do it?

So readability can be pretty good, but when it comes to canon-
ical code, Scheme follows a very different path than Python.
Instead of providing one best way to do something, Scheme is a
tool for creating the language you need to solve your problem.
This means, that while scheme code can look much clearer than
Python-code, it can at the same time be much harder to under-
stand. When you program in Python, you’ll soon see patterns
in the code, so you don’t actually read the full code. Rather
you say “ah, yes, this is a future”. In Scheme on the other hand,
every programmer can use different mechanisms for doing the
same task.

5In my opinion, SRFI-42 still falls a small way short of Python list
comprehensions. In Python, the syntax looks like the datastructure it
creates, joined in a sentence. For example, [i for i in range(5)] can be
spelled as “the list containing i for each i in range up to five”. In SRFI-42 the
syntax rather looks like a statement. I would spell the example (list-ec
(:range i 5) i) as “the list eager comprehension which uses i from the
range up to five as i”. It does not feel quite as polished as the Python
version. But it is already very close and quickly becomes natural.

46
CHAPTER 8. COMPARING GUILE SCHEME TO THE

STRENGTHS OF PYTHON

This sounds pretty harsh, and it warrants an example. For
this, we’ll turn to Sly,6 a really nice game-engine in Guile Scheme,
modelled partly after pyglet.

Writing a movement pattern for a character in Sly looks very
intuitive:

1 use-modules : 2d agenda
2 2d coroutine
3 2d game
4

5 coroutine
6 while #t
7 walk ’up
8 wait game-agenda 60
9 walk ’down

10 wait game-agenda 60

But when you try to understand what coroutine does, you
have to look deep into the nexus of continuations - and then
mangle your mind some more to build the patterns used there.
Let’s do that: We take one step into coroutine.scm.

6Sly is a game engine for Guile Scheme which provides a dynamic
live coding environment that allows games to be built interactively and
iteratively: http://dthompson.us/pages/software/sly.html

http://dthompson.us/pages/software/sly.html
http://pyglet.org
https://gitorious.org/guile-2d/guile-2d/source/342fbcffc1b17f03ae4b9f7de3caccc5e45da0f1:2d/coroutine.scm
http://dthompson.us/pages/software/sly.html

8.2. ONE WAY TO DO IT? 47

1 define : call-with-coroutine thunk
2 . "Apply THUNK with a coroutine prompt."
3 define : handler cont callback . args
4 . "Handler for the prompt.
5 Applies the callback
6 to the continuation (cont)
7 in a second prompt."
8 define : resume . args
9 . "Call continuation

10 that resumes the procedure.
11 Uses the continuation
12 from the handler."
13 call-with-prompt ’coroutine-prompt
14 lambda () : apply cont args
15 . handler
16 ; here the handler
17 ; calls the callback with resume
18 when : procedure? callback
19 apply callback resume args
20

21 ; finally call-with-coroutine
22 ; calls the code (thunk).
23 call-with-prompt ’coroutine-prompt
24 . thunk handler
25

26 ; definition of the coroutine macro.
27 ; Enclodes the code in a function (lambda)
28 define-syntax-rule : coroutine body ...
29 . "Evaluate BODY as a coroutine."
30 call-with-coroutine : lambda () body ...

Firstoff: This really is the full definition of coroutines. 11
lines of concise code (not counting blank lines, docstrings and
comments). From my experience with Python, I would say “this
will be easy to understand”. Let’s try that - beginning with the

48
CHAPTER 8. COMPARING GUILE SCHEME TO THE

STRENGTHS OF PYTHON

macro coroutine at the bottom.
1 define-syntax-rule : coroutine body ...
2 . "Evaluate BODY as a coroutine."
3 call-with-coroutine : lambda () body ...

This one is still easy: If you call coroutine, it simply puts
all the arguments you give it inside a lambda and passes it to
call-with-coroutine. In python, you would do that by defin-
ing a function and passing the function around. So far, so nice.
Now let’s get to the core and understand call-with-coroutine:

8.2. ONE WAY TO DO IT? 49

1 define : call-with-coroutine thunk
2 . "Apply THUNK with a coroutine prompt."
3 define : handler cont callback . args
4 . "Handler for the prompt.
5 Applies the callback
6 to the continuation (cont)
7 in a second prompt."
8 define : resume . args
9 . "Call continuation

10 that resumes the procedure.
11 Uses the continuation
12 from the handler."
13 call-with-prompt ’coroutine-prompt
14 lambda () : apply cont args
15 . handler
16 ; here the handler
17 ; calls the callback with resume
18 when : procedure? callback
19 apply callback resume args
20

21 ; finally call-with-coroutine
22 ; calls the code (thunk).
23 call-with-prompt ’coroutine-prompt
24 . thunk handler

So call-with-coroutine first defines the internal function
handler. That handler gets the arguments cont, callback and
args. It defines the internal function resume. When resume
gets called, it uses call-with-prompt. This isn’t defined here:
It uses continuations, which are something like a supercharged
yield from Python. They allow stopping a function at any point
and later resuming it from there - multiple times if needed. So
this handler returns a function which can continue the control

50
CHAPTER 8. COMPARING GUILE SCHEME TO THE

STRENGTHS OF PYTHON

flow - conveniently called resume. And if I call a coroutine, I
create code which can stop itself and give other functions a way
to continue it where it stopped (getting from defining resume
to passing it to other functions is a huge leap. You can read
some more about this in the chapter about prompts in the Guile
Reference Manual).

I won’t go into further details of continuations here, because
I cannot explain them in an easy way - it took me a few hours to
actually figure out what this code does, and I still have problems
wrapping my mind around all the details. The fundamental
power of delimited continuations is so huge, that after I mostly
understood what this code does, I wrote a short note to a fellow
Science-Fiction RPG designer and told him, that the paranormal
time-warping power we designed could be modelled completely
with continuations and a diff-based memory implementation.

But let’s finish this: On the outside, these 11 lines of code
give you a way to define code you can step through - for example
going one line at a time, and every step returns a function with
which you can resume the function to run the next line.

This is elegant. I cannot even get close to describing the
extent of the elegance of this approach.

But it requires me to wrap my mind around very compli-
cated concepts to understand why the very simple code for the
movement of a character works.7

If I were to use another library, it would likely provide a

7call-with-prompt is already the simplified version of the even more
complex concept of general continuations. Let’s not go there for the time
being. . .

https://www.gnu.org/software/guile/manual/html_node/Prompts.html
https://www.gnu.org/software/guile/manual/
https://www.gnu.org/software/guile/manual/

8.2. ONE WAY TO DO IT? 51

slightly different way to define coroutines. So I cannot easily
build up patterns to quickly understand code. I have to actually
read the code line-by-line and word-by-word. Then I must read
up on the definition of the structures it uses. Only after doing
this, I can begin to hack the code. And this is a problem for
code-reuse and maintainability.

And additionally most Scheme implementations provide
slightly different base functionality.

So on the grounds of providing one way to solve a problem,
Scheme falls far short of Python.

Partly this is the price of Freedom for the Developer.
But another part of this is simply, that the functionality in

Scheme seems to be just a tiny bit too low-level. It does not
expose a well-defined set of easy functionality to build programs.
Instead it provides a set of very powerful tools to build languages
- but the simple ways, which are the default in Python, are mostly
missing – or hidden within the wealth of low-level functionality.
In the strive to provide the perfect environment to define lan-
guages, Scheme loses sight of the requirements for solving actual
problems with code. It is a very elegant language for defining
languages, but for solving actual problems, each library provides
its own domain specific language, and that makes code harder
to understand than needed.

I do not see this as an unsolvable problem, but from the
outside it looks like developers are happy with the situation:
They have all the freedom they need, and they can ignore the
rough edges. But those edges cut the hands of new users.

Note, though, that every set of functions provides a kind
of domain specific language, independent of the programming

52
CHAPTER 8. COMPARING GUILE SCHEME TO THE

STRENGTHS OF PYTHON

language you use. If you create a module in Python with func-
tions for doing a given task, then the names of the functions and
the arguments they take form a language. But (to stay with
the analogy) the shared vocabulary and grammar between those
languages is much bigger in Python than in Scheme. Python-
programmers mostly try to write conventional code: Code which
looks just like the user expects it to look.

And in Python, this is the easiest way to write code – that
is a part of the Zen of Python – while in Scheme unconventional
code is just as easy to write as conventional code.

So in Scheme there is not one way to do it. There are countless
ways, and most of them can be made to work similarly well.

8.3 Planned Hackablility, but hard to
discover. . .

Similar to the many ways to do a task in Guile Scheme, there
are big differences to Python, when it comes to hackability.

Python exposes most of its inner workings via double-
underscored attributes and functions. As such, almost every
obscure possibility is available at all times, but never elegantly.

Guile Scheme on the other hand provides explicit ways to
change its inner workings, but does not give access to everything
it could. Consequently, hacking Guile and hacking Python are
two completely different things. We’ll go through a few examples
to get a feeling for the different styles.

8.3. PLANNED HACKABLILITY, BUT HARD TO
DISCOVER. . . 53

Accessing variables inside modules

As in Python, Guile Scheme allows you to access all toplevel
variables in a module. Whether you only see exported variables
or all of them is a matter of whether you use ’resolve-interface’
or ’resolve-module’. When defining a module, you explicitely
define which values are exported. In contrast, Python uses
the convention that names starting with an underscore are not
exported and all others are implicitly exported.

To get the variables and functions in a module you can use
dir:

1 import math
2 dir(math)

A rough equivalent in Guile Scheme is
1 module-map
2 lambda (sym var) sym ; return the symbol (key)
3 resolve-interface ’(ice-9 popen)

Getting an exported binding (variable or function) directly
can be done via @:

1 define oip : @ (ice-9 popen) open-input-pipe

To get a non-exported binding, just use @@ instead of @.
If you want to get the bindings for a module referenced in

some datastructure, module-ref might be more convenient:
1 define oip
2 module-ref
3 resolve-module ’(ice-9 popen)
4 . ’open-input-pipe

54
CHAPTER 8. COMPARING GUILE SCHEME TO THE

STRENGTHS OF PYTHON

Runtime Self-Introspection

The title of this part is a fancy name for “getting implementation
details at runtime which a clean system should not need but
which many people use anyway”. For example for locating image-
files which are stored in a path relative to the script-file (which
is evil if the program gets installed cleanly, but can come in
handy during development and for deploy-by-dropping-a-folder-
somewhere).

A file as module and script

In Python, you can always check whether a file was imported as
module or started as script by checking for __name__. If that is
__main__, then the script is the file the user executed. And you
can retrieve the filename of a module with the magic attribute
__file__.

1 if __name__ == "__main__":
2 print "you executed", __file__

In Scheme you do not use magic attributes as in python, but
you have several ways to achieve the same.

You can explicitely check the command-line arguments for
running code only when the file is called as script. This example
is not yet perfect, but it does its job as long as you do not reuse
the filename of modules you use. Note that for this part I switch
back from wisp to scheme (with parens), because this makes it

8.3. PLANNED HACKABLILITY, BUT HARD TO
DISCOVER. . . 55

easier to discuss the code with scheme-hackers (and I’m pretty
far out of my zone of expertise, so this is important).

1 (define (my-local-main)
2 (display "I am just a dummy, why do you call me?"))
3 (let ((my-local-name (module-filename
4 (program-module my-local-main))))
5 ; catch the case when the compiler
6 ; optimized away the info.
7 (when (or (not my-local-name)
8 (string-suffix? (car (command-line))
9 my-local-name))

10 (display "you executed this as script.")))

The limitation never to repeat a filename is a serious one,
though: Do NOT use this code in production. It is here to show
feature parity by taking a similar approach. Luckily there are
safer solutions.

If you know the location of your guile interpreter, you can
use the meta-switch. This is very useful for local development
and for distributions, but it does not work if you need to use
#!/usr/bin/env guile as the hashbang to make your script
more portable (the meta-switch is something which is direly
missing in env - even GNU env).

As simpler alternative, you can run any file from guile as a
script instead of importing it as module: just call it with guile
-e main -s scriptfile.scm. This misses the use-case by a
fine margin, because it moves part of the running logic outside
the script file, but it shows the way towards the most versatile
solution in Guile:

Just use a hashbang for a shell script which contains the

https://www.gnu.org/software/guile/manual/html_node/The-Meta-Switch.html

56
CHAPTER 8. COMPARING GUILE SCHEME TO THE

STRENGTHS OF PYTHON

information how to run the module as script. This is possible
because in guile-scheme #! starts a comment which lasts up to
!#, so when the shell re-runs the file with guile, guile will ignore
the shell-part of the file.

1 #!/bin/sh
2 # -*- scheme -*-
3 exec guile -e main -s "$0" "$@"
4 # Thanks to exec, the following lines
5 # are never seen by the shell.
6 !#
7 (define (main args)
8 (display "Horaay!\n"))

And this is technical elegance in its raw form: Interaction of
different parts of the system to form something much greater
than its parts by generalizing an already existing special case
(the hash-bang as starting a multiline-comment). I pull my hat
before whoever discovered and realized this solution.

If you want to use this in a module, you need to call the main
from the module:

1 #!/bin/sh
2 # -*- scheme -*-
3 exec guile -e ’(@ (py2guile runscript) main)’ -s "$0" "$@"
4 # use @@ if your module does not export main
5 !#
6 (define-module (py2guile runscript)
7 #:export (main))
8 (define (main args)
9 (display "Horaay! Module! Horaay!\n"))

To estimate the overhead of running a shell-script and then
deferring to guile, I compared this script to a script started with

8.3. PLANNED HACKABLILITY, BUT HARD TO
DISCOVER. . . 57

env and a script which uses the meta-trick:
1 #!/usr/bin/env guile
2 !#
3 (define (main args)
4 (display "Horaay!\n"))
5 (main 1)

1 #!/usr/bin/guile \
2 -e main -s
3 !#
4 (define (main args)
5 (display "Horaay!\n"))

Also I added a script which used dash as shell instead of bash
(by replacing /bin/sh with /bin/dash).

I then ran the scripts with a simple for-loop:
1 for script in runscript-shell.scm runscript-dash.scm \
2 runscript-env.scm runscript-meta.scm; do
3 echo $script; ./${script} >/dev/null;
4 time for i in {1..1000}; do
5 ./${script} >/dev/null;
6 done;
7 done

The runtimes for 1000 runs were 20-24s when deferring to
shell, 20-24s when using dash, 18-20s when calling the script via
env and 17-19s when using the meta-switch. So the overhead for
running via the shell is about 3-4ms - which I would call mostly
negligible given that the python equivalent of this script requires
19-23ms, too.

One problem could be that the startup time for the shell
method is a bit unstable: On some runs it jumps up to 30ms. To

58
CHAPTER 8. COMPARING GUILE SCHEME TO THE

STRENGTHS OF PYTHON

check that, we can look at the average value and the standard
deviation in 1000 runs:8

1 for script in runscript-shell.scm runscript-dash.scm \
2 runscript-env.scm runscript-meta.scm; do
3 echo real $script; ./${script} >/dev/null;
4 for i in {1..1000}; do
5 time ./${script} >/dev/null;
6 done;
7 done 2>&1 | grep real | sed "s/.*0m.*\\.0//" | sed s/s$//

• shell-deferring: 23.2± 1.9 ms (range from 14ms to 29ms)

• dash: 22.7± 2.5 ms (range from 14ms to 27ms)

• env: 22.3± 2.8 ms (range from 13ms to 26ms)

• meta-trick: 19.7± 2.8 ms (range from 13ms to 19ms)

• python (with if __name__...): 22.0±1.8 ms (range from
18ms to 26ms)

These numbers are with guile 2.0.11 on a 64bit machine with
a standard rotating (no SSD).

I guess that the additional spread of the startup times when
using the shell-deferring is due to filesystem-access and caching,
but I did not trace it further. The additional 3ms of the average
time with shell-deferring is just the startup time of bash when
started from bash via bash -c true.

8According to Andy Wingo’s writeup on Elf in Guile, version 2.2 should
reduce these startup times quite a bit: http://wingolog.org/archives/
2014/01/19/elf-in-guile

http://wingolog.org/archives/2014/01/19/elf-in-guile
http://wingolog.org/archives/2014/01/19/elf-in-guile
http://wingolog.org/archives/2014/01/19/elf-in-guile

8.3. PLANNED HACKABLILITY, BUT HARD TO
DISCOVER. . . 59

So on average using the feature-equal method to call a script
in Guile Scheme (shell-deferring) is just as fast as the equivalent
method in Python. But there are ways to decrease the startup
time if you have additional information about the system.

Practical Hint (as far as I understand it): If you are a distri-
bution maintainer, and you see shell-deferring in Guile scripts,
you can speed them up with the meta-trick. But if you are
a developer and you want to make your script as portable as
possible, your best bet is shell-deferring. This is also what guild
uses to create executable guile-modules, so it is very unlikely
that something will break this behaviour.

For larger projects you’d likely be better off with defining a
script-runner which runs functions imported via (@@ (package
module) function). A script-runner with some error informa-
tion would be the following script:

60
CHAPTER 8. COMPARING GUILE SCHEME TO THE

STRENGTHS OF PYTHON

1 #!/usr/bin/env guile
2 -*- scheme -*-
3 !#
4 ; This code will run the main function of the file it is given
5 ; as argument. This keeps the testing logic inside the project
6 ; while keeping the overhead for each module to a minimum.
7 ; Thanks to Mark Weaver for this code!
8 (use-modules (ice-9 match))
9

10 (match (command-line)
11 ((_ file args ...)
12 (primitive-load file)
13 (let ((main (module-ref (current-module) ’main)))
14 (main args)))
15 ((cmd . _)
16 (format (current-error-port)
17 "Usage: ~a FILE [ARGS ...]\n"
18 (basename cmd))))

Where am I?

A more complex example asks, in which file a function I am
using is defined. In Python, this works roughly like this:

1 from math import log
2 log.__module__ # it is math
3 import math
4 print math.__file__
5 # this code prints /usr/lib/python2.7/lib-dynload/math.so

or rather

8.3. PLANNED HACKABLILITY, BUT HARD TO
DISCOVER. . . 61

1 from math import log
2 print __import__(log.__module__).__file__
3 # this code prints /usr/lib/python2.7/lib-dynload/math.so

In Guile Scheme I would achieve the same effect with this:
1 use-modules : system vm program
2 (ice-9 popen) #:select : open-input-pipe
3 ; then regain the module path
4 display : module-filename : program-module open-input-pipe
5 newline ; this code prints ice-9/popen.scm

or rather
1 use-modules : system vm program
2 (ice-9 popen) #:select : open-input-pipe
3 display : module-filename : program-module open-input-pipe
4 newline

To find the absolute path, you need to search %load-path
for the file-path (a variable holding the list of the load path).
For example you could it like this:

1 map
2 lambda : x ; lambda is an anonymous function.
3 ; In code you can also use the lambda-symbol,
4 ; but it breaks my latex export.
5 let*
6 : sep file-name-separator-string
7 path : string-join (list x "ice-9/popen.scm") sep
8 if : file-exists? path
9 . path

10 . %load-path

Some more information on this is available in the nala-repl
interpreter hacks.

https://github.com/NalaGinrut/nala-repl/blob/master/nala/src.scm
https://github.com/NalaGinrut/nala-repl/blob/master/nala/src.scm

62
CHAPTER 8. COMPARING GUILE SCHEME TO THE

STRENGTHS OF PYTHON

For using command-line arguments and such, have a look at
Guile-Scripting.

As you can see in the example, the python-versions often look
more hacky, but they are shorter. Yet a big difference between
both is that in Guile Scheme you could add syntactic sugar
yourself to make this nicer. And that’s where we now come to.

freedom: changing the syntax is the same as
regular programming

The following shows an example for checking whether the file
was called itself. Made easy. Using syntax macros, it replaces if
__name__... from python with a block within ((in=m ...)).

This example illustrates the power you get from tweaking the
syntax in Scheme, but it is not a perfect clone: If you repeat a
filepath in another part of the load path, the code will be run. I
consider that a minor issue, because repeating the file path is also
a toxic case in Python. In Python it would result in replacing
a loadable module, potentially wreaking havoc on many other
programs. If you find yourself tempted to use this example for
creating scripts which also serve as modules, please turn to the
safer ways shown in the previous section: The meta-trick, if you
know the location of the guile-interpreter, or shell-deferring
(env on steroids) if you want to be as portable as possible. Guile
Scheme is not Python, so some tasks are done differently - often
in a more versatile way.

http://www.gnu.org/software/guile/manual/html_node/Guile-Scripting.html#Guile-Scripting

8.3. PLANNED HACKABLILITY, BUT HARD TO
DISCOVER. . . 63

1 ; define the module
2 (define-module (inm)
3 #:export (inm in=m))
4

5 ; get introspection capabilities
6 (use-modules (system vm program))
7 ; define a syntax rule.
8 (define-syntax-rule (in=m body ...)
9 (lambda ()

10 (define (my-local-main)
11 (display "I am just a dummy, why do you call me?"))
12 (let ((my-local-name
13 (module-filename (program-module my-local-main))))
14 (when (or (not my-local-name) ; catch the case
15 ; when the compiler
16 ; optimized away the info.
17 (string-suffix? (car (command-line)) my-local-name))
18 (begin body ...)))))
19 ; the lambda is executed here, not in the macro!
20 ((in=m (display "you executed inm.scm as script")
21 (newline)))

From another module:
1 (define-module (in))
2

3 (use-modules (inm))
4 ((in=m (display "in.scm")))

it is not triggered when importing this in yet another file.
1 (use-modules (in))

Note that doing stuff like this is seen as normal programming
in Guile Scheme, while it is seen as hacky in Python. The scope

64
CHAPTER 8. COMPARING GUILE SCHEME TO THE

STRENGTHS OF PYTHON

of hack and expected usage differs between Python and Guile
Scheme.

Extending the syntax of your language to better suit your
problem space is a core feature of Guile Scheme.

Discovering starting points for hacking

So far my tries to change something which isn’t in the explicitely
supported adaptions weren’t as successful as I had expected.
But I’m comparing several years of intense experimenting with
Python to experimenting with Guile Scheme now-and-then, so
all I can say is: discovering starting points for doing something
which the main developers did not anticipate requires a different
approach than in Python. When searching what I can do, I’m
used to simply dropping to the Python shell, typing the variable
with a trailing period and hitting tab to let readline completion
do the rest. Since Scheme does not give access to the namespace
content via the dot-syntax, I cannot use this here.

The approach which currently works for me with Guile
Scheme is just asking on IRC, but that does not scale to a
quickly growing userbase (when the number of users grows much
faster than the number of experts).

One of the things you should definitely do when starting
with Guile is getting familiar with GNU Info - either the stan-
dalone reader (just type info in a shell) or better still the
info-mode in emacs (invoked with C-h i). Then just go to the
guile topic (hit m, then type Guile Reference) and do a full-text
search with ctrl-s <search text> ctrl-s ctrl-s (repeating

http://www.gnu.org/software/texinfo/manual/info/info.html#Top

8.4. BATTERIES AND BINDINGS: FFI 65

ctrl-s tells info to search all subtopics). That lessens the need
to ask a lot.

If you want to use a search engine, add “Guile Scheme” as
identifier. “Guile” often gets the character from the Street Fighter
game series and “Scheme” gets anything from URL schemes to
business processes, but not how to use them in Scheme.

8.4 Batteries and Bindings: FFI

The Batteries and Bindings of Guile are generally weaker than
those of Python. To mitigate this a bit, Guile provides a simple
way to call libraries written in C: The Foreign Function Interface
(FFI).

With this I can wrap a library into a Scheme-module so it
appears like a native tool. To investigate, I tested the simplest
case of wrapping a library I’ll really need: netCDF4.

1 use-modules : system foreign
2 ; load the netcdf library.
3 define libnetcdf : dynamic-link "libnetcdf"
4 ; get the function to inquire the netcdf version.
5 define nc_inc_libvers
6 pointer->procedure
7 . ’* ; returns a pointer to a char-array.
8 dynamic-func "nc_inq_libvers" libnetcdf
9 list ; takes no arguments (empty list)

10

11 ; test the foreign function
12 ; and convert the returned char-array to a string.
13 pointer->string : nc_inc_libvers
14 ; => "4.1.1 of Jul 1 2013 03:15:04"

66
CHAPTER 8. COMPARING GUILE SCHEME TO THE

STRENGTHS OF PYTHON

So I can wrap a library without too much effort. As seen in
the example, wrapping a simple function can be done in just 7
short lines of code.

The Guile manual provides important resources for working
with FFI:

• Foreign Functions

• Void Pointers and Byte Access

It leaves quite a few open questions, though:

• Can I wrap fortran? equivalent to f2py? fwrap to wrap
fortran in C and call it? Use Fortran Interoperability with
C / Interfacing with C?

• How good is its Performance? bytevectors for direct mem-
ory access?

• How to wrap other languages? Is there something equiva-
lent to Integrating Python with other languages? Or Using
Python as Glue (ctypes should be equivalent to FFI)?

So while not being too complex, this is also not really painless.
Guile provides the basic tools which could give it quite as many
batteries as Python. With bytevectors for memory-access, it
could have something similar to numpy. But to get closer to that,
it would need a common API for interfacing with big C-arrays.
An API which keeps the C-arrays as reference (for example using
methods described in the Guile manual under Accessing Arrays

https://www.gnu.org/software/guile/manual/html_node/Foreign-Functions.html
https://www.gnu.org/software/guile/manual/html_node/Void-Pointers-and-Byte-Access.html#Void-Pointers-and-Byte-Access
http://www.f2py.com/
http://fwrap.sourceforge.net/
http://gcc.gnu.org/onlinedocs/gfortran/Interoperability-with-C.html
http://gcc.gnu.org/onlinedocs/gfortran/Interoperability-with-C.html
http://www.fortran90.org/src/best-practices.html#interfacing-with-c
https://wiki.python.org/moin/IntegratingPythonWithOtherLanguages
http://docs.scipy.org/doc/numpy/user/c-info.python-as-glue.html
http://docs.scipy.org/doc/numpy/user/c-info.python-as-glue.html
http://www.gnu.org/software/guile/manual/html_node/Accessing-Arrays-from-C.html#Accessing-Arrays-from-C
http://www.gnu.org/software/guile/manual/html_node/Accessing-Arrays-from-C.html#Accessing-Arrays-from-C
http://www.gnu.org/software/guile/manual/html_node/Accessing-Arrays-from-C.html#Accessing-Arrays-from-C

8.5. DOES IT SCALE UP? 67

from C), so they can easily be passed to libraries and returned
from foreign functions with negligible runtime cost and which
provides easy ways of slicing and mathematical operations (like
numpy).

If every GNU library provided a Schemish interface for Guile,
that would go a good way towards providing powerful batteries -
especially because GNU already provides powerful mathematic
libraries. So the basics are in place, but Guile will need a lot
of very good and hard work to reach the state of Python. And
that means more exposure to programmers who use Guile for
real work and complain about the remaining unpolished corners.

To realize a consistent way for accessing foreign libraries, this
also needs a definition of what constitutes Schemish code. Most
Guile developers follow the guidelines in Riastradh’s Lisp Style
Rules, as well as code examples from GNU Guix.9

On the other hand, the FFI interface already looks similarly
elegant as interfaces written in cython, but without the need to
compile it.

8.5 Does it scale up?

I cannot yet say whether Guile scales up for certain, because the
scaling will only show after prolonged usage.

But I already found some information which suggests scaling
properties of Guile.

9Riastradh’s Lisp Style Rules is an article which provides rules with
rationales for formatting Lisp code, with some parts focussed specifically on
Scheme: http://mumble.net/~campbell/scheme/style.txt

http://www.gnu.org/software/guile/manual/html_node/Accessing-Arrays-from-C.html#Accessing-Arrays-from-C
http://www.gnu.org/software/guile/manual/html_node/Accessing-Arrays-from-C.html#Accessing-Arrays-from-C
http://www.gnu.org/software/guile/manual/html_node/Accessing-Arrays-from-C.html#Accessing-Arrays-from-C
http://mumble.net/~campbell/scheme/style.txt
http://mumble.net/~campbell/scheme/style.txt
http://gnu.org/s/guix
http://cython.org/
http://mumble.net/~campbell/scheme/style.txt
http://mumble.net/~campbell/scheme/style.txt

68
CHAPTER 8. COMPARING GUILE SCHEME TO THE

STRENGTHS OF PYTHON

I miss the namespace-by-default from Python, though I can
add namespaces to modules and import only specific bindings.
For bigger projects, I can just write my own import wrapper
which adds namespaces by default - and the same goes for almost
any other limitation of Guile Scheme. But every change will
make it harder for newcomers to understand the code.

On the other hand, code using let-recursion should scale
much better than for-loops, because it makes it easier to extract
parts of the loop. Let’s look at some specifics.

Positional arguments and keyword arguments

Different from Python, an argument in GNU Guile can either be
a required positional argument, an optional positional argument
or a keyword-argument, but not several at the same time.

1 use-modules : ice-9 optargs
2 define*
3 example required1
4 . #:optional opt1 (opt2 ’opt2default)
5 ; optional must come before #:key!
6 . #:key named1 (named2 ’named2default)
7 . . rest
8 display
9 list ’required1: required1

10 . ’opt1: opt1 ’opt2: opt2
11 . ’named1: named1 ’named2: named2
12 . ’rest: rest
13

14 example ’foo #:named2 ’bar ’baz
15 newline

http://draketo.de/light/english/recursion-wins
http://draketo.de/light/english/recursion-wins

8.5. DOES IT SCALE UP? 69

In Python, positional arguments always double as keyword-
arguments, so a user of a library can explicitly state in a function
call which meaning the different passed arguments will have, but
there are no optional positional arguments without default vaule
(in Guile those default to #f). This makes it very easy to call
functions in a readily understandable way. On the other hand,
this means that Python makes the function-internal names of
arguments part of the exposed API of the function. Changing
them means changing the API – and as such potentialley breaking
external code.

So I cannot really decide which of these approaches is better
for scaling. Python seems more convenient for the user of libraries
and makes it easier to transition from positional arguments
to keyword-arguments when the function signature becomes
unwieldy. But locking the names of positional arguments into
the API also means that a programmer can never change these
names to suit changes in the implementation of the function.

So in terms of function-arguments, Python and Guile Scheme
make different tradeoffs, but I cannot decide which approach
will be better in the long run.

Note that (define* (func #:key foo . rest) ...) puts
the keywords in the list rest (in addition to providing them as
variables) instead of using a dictionary of keyword-value pairs
and a list, so it can require additional parsing. I think this could
benefit from some polish.

70
CHAPTER 8. COMPARING GUILE SCHEME TO THE

STRENGTHS OF PYTHON

Different ways to import modules

When it comes to importing, though, the difference is clearer.
GNU Guile offers quite a few different ways of importing modules,
while Python sticks to a few default ways.

If you follow the default way10, Guile gets all bindings without
namespace. This is not what I would want, given my experience
from Python, but since C does it the same way with #include,
it’s clear that this does not make it impossible to scale up. Just
a bit inconvenient.

1 use-modules : ice-9 popen

To make it clear where the bindings in a given module come
from, I can import modules with a namespace. This uses the
general renamer keyword and I consider it as much more useful
than the default way. Note that I can use any prefix, so I could
even unite the bindings from several modules under a common
prefix. This would defeat the purpose for me (finding the file
from which the bindings originate by looking at the prefix), but
Guile Scheme makes it possible and quite easy.

1 use-modules
2 : ice-9 popen ; note the added indentation!
3 . #:renamer : symbol-prefix-proc ’popen-

To make the common case of prefixing easier, there’s also a
dedicated prefix option:

10As default way I take the one which Guile uses if you give it no
additional arguments: The easiest way for the programmer.

8.5. DOES IT SCALE UP? 71

1 use-modules
2 : ice-9 popen ; note the added indentation!
3 . #:prefix popen-

Also I can restrict the import to specific bindings and rename
them individually:

1 use-modules
2 : ice-9 popen
3 . #:select : (open-pipe . pipe-open) close-pipe

And naturally these methods can all be combined.
These methods can mirror all the possibilities from Python

and then a few more, but the default way is less suited for
scaling up, because it litters the namespace with all the exported
functions from imported modules without any prefix. Due to this
choice, finding the origin of a binding requires either IDE support,
checking at runtime or looking into all imported modules.

On the other hand, Guile encourages exporting only selected
functions from a module as explicit API, and it allows mixing
several modules under the same prefix – a capability which
Python only made default in 2012 (version 3.3) as “implicit
namespace packages” (PEP-340) which made the import process
more complex.

But still I would wish for a default which adds the name of
the module to all imported bindings. On the upside, with Guile
it is possible to add this myself.

72
CHAPTER 8. COMPARING GUILE SCHEME TO THE

STRENGTHS OF PYTHON

identifier-syntax: getters and setters for variables

Guile Scheme provides identifier-syntax which works like Python
properties: simple variables to which I can later add getters and
setters, one of the big scalability assets of Python.

This does not (yet?) work with Wisp because that adapts
the reader, but if you use parenthesized Scheme, you can do this:

1 (define y 5)
2 (define-syntax x
3 (identifier-syntax (var y)
4 ((set! var val)
5 (set! y (+ 1 val)))))
6 (write x) ; -> 5
7 (set! x 5)
8 (write x) ; -> 6!

This enables you to define an API with the simple variable x
and if you later want to add constraints on the values of x or
retrieve the value from some datastructure or hidden variable,
you can easily do so without changing the exposed API.

Adapting the syntax to the problem

With Macros, Guile allows adapting most aspects of the language
to the task at hand. For small projects, this can provide a solid
core of tools which make programming more enjoyable. While the
project is small, these serve as syntactic sugar for convenience.

When the project grows however, the impact of these tools
can become much bigger, as they allow cutting unnecessary
overhead at every step.

https://www.gnu.org/software/guile/manual/html_node/Identifier-Macros.html#index-identifier_002dsyntax-1
https://www.gnu.org/software/guile/manual/html_node/Macros.html#Macros

8.5. DOES IT SCALE UP? 73

If they are well-designed, they can make it much easier to
scale a project from hobby-tinkering to production quality.

When the project I wrote for evaluation in my PhD thesis
grew beyond its initial scope I had to turn to very dark corners
of Python to keep it maintainable. And despite the elegance
of their design, even great web frameworks like django always
expose a certain degree of ugliness as they struggle to realize their
goals in the constraints of Python (though in my still limited
experience this is much, much worse with C-based projects). I’ll
call these constraints warts - similar to the usage of that term
in the Python-community when it comes to the core-language.

With Guile it is possible to avoid most of these warts, because
the basic constraints of its syntax are much smaller than the
constraints of Python.

On the other hand, this makes the design of macros more
challenging, because they can affect everything you do, and badly
designed macros can create much more ugliness than allowing
the warts of Python to creep in. So while the macros should
make it much easier to scale a project written in Guile than to
scale a project written in Python, it can make more sense to rely
on standard syntax in the beginning and only start playing with
macros when you gathered experience with the requirements of
your project. But then, to learn using macros effectively, you
have to experiment with them - which is a bit of a catch-22. If
you’re interested in all the nifty tricks you can do with macros
and syntax-transformation, it might therefore be best to start
with a breakable toy.11

11A breakable toy is a basic building block from Apprenticeship Patterns

http://chimera.labs.oreilly.com/books/1234000001813/ch05.html#breakable_toys

74
CHAPTER 8. COMPARING GUILE SCHEME TO THE

STRENGTHS OF PYTHON

Good practice is needed! (but not enforced)

As you can see from all the different ways to import bindings
and to generally tackle problems in Guile Scheme, good practice
becomes much more important than in Python. While in Python
you say

» Don’t use from os import * «

Guile-using development teams actually have to give clear
code-guidelines to get a consistent codebase.

On the other hand, you can experiment with better ways to
work and move programming paradigms forward without having
to invent your own new language from scratch.

With this, Guile Scheme allows you to make code-structures
scale which do not scale well in Python.

8.6 Summary

A first look at Guile Scheme through the lens of the strengths of
Python shows a much less polished language. Instead of having
one easy way to do something, every developer can take his or
her own path, making it harder to understand code from your
fellows, and where Python greets the beginning programmer with

in which you choose a project which is interesting but which is not needed
in production, so you can play with it without fearing to lose something
if you break it. It allows easy experimentation and faster learning due to
being able to try new things without having to get them perfect right away
and without having to polish them for use by others: http://chimera.labs.
oreilly.com/books/1234000001813/ch05.html#breakable_toys

http://chimera.labs.oreilly.com/books/1234000001813/ch05.html##breakable_toys
http://chimera.labs.oreilly.com/books/1234000001813/ch05.html##breakable_toys

8.6. SUMMARY 75

readily accessible default structures, Scheme exposes minimal
features which beg to be extended, while many advanced but
actually easily understandable structures are hidden in modules
people have to find before they can use them.

On hackability Python actually makes it easier than Guile
Scheme to find ways for hacking on deep concepts by simply using
autocompletion in the shell – and with very nice documentation
– but when we look at the reasons why such hacks are used,
Scheme becomes far easier, because many of the actions which
feel like hacks in Python are cleanly integrated in Guile Scheme
- or can be realized using only core functionality.

Following the lifecycle of a program also looks more feasible
in Scheme, though I guess that it requires deviating from the
simplest way of doing something. When programs get bigger,
the syntax-adjustments in Scheme should start to pay off more
and more, though these require discipline from the programmers
to avoid locking themselves into a bubble of language concepts
which are alien to newcomers.

Similarly while Guile provides fewer batteries, it is possible
to build more batteries with the simple Foreign Function In-
terface (FFI). With this method, wrapping a library is about
as convenient as doing the same with cython. I did not find
a similarly powerful and consistent interface as the one which
numpy provides to access numerical datasets in Python, though
bytevectors might provide a good base to start. All the basics
seem to be in place, but they need lots of solid work to get close
to Python in terms of directly usable and consistent bindings.

In terms of executable pseudocode, Scheme shines (at least
after taking care of the parens). Some of its names seem unin-

76
CHAPTER 8. COMPARING GUILE SCHEME TO THE

STRENGTHS OF PYTHON

tuitive to me, but its very consistent and easy structure makes
it even more accessible than Python - at least for people who
do not come with a huge can of preconceptions from C-like
languages. This is especially true when using the curly-infix
extension (SRFI-105) which allows avoiding prefix-notation for
mathematics.

After that initial very good impression, the ride gets a lit-
tle bumpy with unusual naming and some really mindbending
features, until the advanced capabilities of Scheme come into
bearing and allow clean and simple solutions to challenges which
in Python require ugly hacks.

But before we go into these neat solutions and take program-
ming beyond Python, there are some dark places to visit.

Chapter 9

Guile Scheme Shortcomings

Guile Scheme is a solid language, and it can compete quite well
with Python, even in the areas where Python is strongest. But
there are still some dark corners I did not mention yet. Here I
will explore the worst shortcomings I found in Guile Scheme.

9.1 creating languages and solving problems

As written in One way to do it?, Guile Scheme is harder for
newcomers. And I think I can see (part of) the reason for that.

Different from Python, which is clearly focussed on solving
problems, Guile Scheme has a dual focus: Creating new language
structures and solving problems with the same language. And
from my current experience, the focus on creating languages is
stronger than the focus on solving problems.

77

78 CHAPTER 9. GUILE SCHEME SHORTCOMINGS

This leads to a mix of high-level and very low-level operations
and less than ideal naming of functions.

Guile Scheme is a wonderful ontology which encodes the com-
mon tasks for creating new language structures, but its structures
for solving general problems are ripe with inelegancies like using
the name list-ec (collect into a list) for list comprehensions or
in-list for looping over a list instead of simply using in.

To get this polished, it will need lots of real life usage to
straighten out rough edges and find which convenience functions
are needed in practical work.

What I am also missing which could make this much easier
is a guide which combines the most elegant structures in Guile
Scheme into a canonical way to solve problems. It is possible
that it already exists, but I did not see it yet - and such a guide
should be the first point of contact for a new Schemer.

9.2 car and cdr: Implementation details in
the language

Similar as with list-ec and in-list, implementation details
creep into high-level Scheme code at many points. The most
visible example are car and cdr (read as “coulder”).

car and cdr are used in Scheme for accessing the head and
the tail of a list (and some other data structures), and while
their use soon becomes second nature, when you use Scheme
a lot (because they are used all the time in recursion), their
meaning is completely opaque to newcomers.

9.2. CAR AND CDR: IMPLEMENTATION DETAILS IN
THE LANGUAGE 79

Let’s show that with an example from the book The Little
Schemer1:

1 define rember
2 lambda : a lat
3 cond
4 : null? lat
5 quote ()
6 : equal? (car lat) a
7 cdr lat
8 else
9 cons : car lat

10 rember a : cdr lat

This function walks through the list lat and removes the
first occurrence of a.

Compare this to the same function using first and rest:
1 define rember
2 lambda : a lat
3 cond
4 : null? lat
5 quote ()
6 : equal? (first lat) a
7 rest lat
8 else
9 cons : first lat

10 rember a : rest lat

1This example uses equal? instead of eq? to make the distinction
between car/cdr and first/rest more visible. eq? compares object identity
while equal? compares the content of a variable. In The Little Schemer
rember uses eq? because it is defined at a point in the book where equal?
is still unknown.

80 CHAPTER 9. GUILE SCHEME SHORTCOMINGS

So why are car and cdr used instead of more speaking names?
The origin of their names lies in early machine language:

• car: Contents of the Address part of Register number

• cdr: Contents of the Decrement part of Register number

So their use began as an implementation detail.
According to Wikipedia, they continue being used, because

their structure makes it easy to define visually similar functions
for multiple applications. For example caar is the first element
of the first element of a list ((car (car l))), cadr is the second
element in a list ((car (cdr l))), and cddr is the tail of the
list beginning with the 3rd element ((cdr (cdr l))).2

And from my own experience with The Little Schemer, car
and cdr quickly become something like invocations - an integral
part of the “sound” of the code. That doesn’t make them less
opaque to newcomers, though.

A partial solution to the more speaking names is using srfi-1,
which provides first, second, third, and so forth - alternatives to
car, cadr and caddr. It does not have an equally simple alterna-
tive to cdr, though. You have to use the 2-argument function
(drop list i), which returns all but the first i elements from
the list. It would be trivial to define a drop-first function
which is equivalent to cdr, but this is not part of the srfi-1,

2Going from cdr to cddr is similar to the way how derivation is written
in mathematics: dx/dt for the first derivative, d²x/dt² for the second, and
so forth. In ASCII this can be simplified to xddt - In the last 2 years I read
plenty of fortran code using variable names like mdddx: The third derivative
of the mass in x-direction.

9.2. CAR AND CDR: IMPLEMENTATION DETAILS IN
THE LANGUAGE 81

and consequently you have to define it yourself for each project
or stick to cdr.

To also replace caar, cadr and cddr, Guile provides a more
flexible alternative in the match-module via Pattern Matching.

1 use-modules : ice-9 match
2 define l ’(1 2 3)
3 match l
4 : car cadr caddr
5 . car
6 ; => 1
7 match l
8 : car cadr caddr
9 . cadr

10 ; => 2
11 match l
12 : car cdr ...
13 . cdr
14 ; => (2 3)
15 match l
16 : car cadr cddr ...
17 . cddr
18 ; => (3)
19 match ’(1 (11 12) 2)
20 : car (caadr cadadr) caddr ...
21 . cadadr
22 ; => 12

Or, for that matter:
1 use-modules : ice-9 match
2 define l ’(1 2 3)
3 match l
4 : fubbly dubbly duh
5 . fubbly
6 ; => 1

http://www.gnu.org/software/guile/manual/html_node/Pattern-Matching.html#Pattern-Matching

82 CHAPTER 9. GUILE SCHEME SHORTCOMINGS

In parenthesized scheme, match-usage looks like this (in-
cluded here to make it easy to recognize when you see it):

1 (use-modules (ice-9 match))
2 (match ’(1 2 3)
3 ((car cadr caddr)
4 cadr))
5 ; => 2
6 (match ’(1 2 3)
7 ((car cadr cddr ...)
8 cddr))
9 ; => ’(3)

In general this is not what I would call simple, but it is
explicit - and it follows the common theme to be much more
powerful than anything I had imagined.

As in other areas, Guile Scheme provides the features I need
to easily define my own language while slightly missing the sweet
spot for solving common problems. It creates the tools needed
to squarely hit the sweet spot, but then does not utilize this
power to provide the last 10% of polish for problem-solving.

9.3 Inconsistency, overhead, duplication

And this missing polish is visible in quite a few other areas,
too. From my current impression, Guile Scheme is a language of
power and necessity, but when it comes to convenient usage, it
has quite a few rough corners.

This starts with inconsistent ordering of function arguments,
shows up in duplication of functionality for different types and

9.3. INCONSISTENCY, OVERHEAD, DUPLICATION 83

leads to overhead in the function specification to make it usable
for multiple usecases.

For example string-index s char_pred searches for the
second argument within the first, while string-prefix? s1
s2 checks whether the first argument is a prefix of the second.
Also string-index takes a character and not a string as second
argument, while is-a? is used to ask is-a? 0 <number>, but
not in the ordering is-a? <number> 0 which would sound more
like a typical sentence.

And the duplication shows in length and string-length:
length gives the length of a list, but to operate on a string, you
have to use string-length, even though Guile with GOOPS
(the Guile Object Oriented Programming System) is perfectly
capable of matching different implementations for different types
to the same name.

Finally the overhead can be seen with format: Its first argu-
ment defines where the formatted string should be written, with
#f saying that it should return a formatted string.

At least the two later issues could easily be avoided. Adding
generic behavior for length just requires 4 lines of code:

1 use-modules : oop goops ; get goops functionality
2 define-generic length ; allow specialization of length
3

4 define-method : length (s <string>)
5 string-length s ; just reuse string-length
6 ; that’s it. Now this works:
7 length "123"
8 ; => 3

And using GOOPS with keyword-arguments, format could

84 CHAPTER 9. GUILE SCHEME SHORTCOMINGS

be crisp for the usual case (I’ll arbitrarily take that as returning
a string) while providing all flexibility for the general case:

1 use-modules : oop goops
2 define-generic format
3 define-method : format (s <string>) . rest
4 apply format #f s rest

This could be made nicer by adding the destination as
a keyword argument, but (ice-9 optargs) does not define
a define-method* with keyword argument parsing similar to
define*. Which is another case where inconsistency crept in.

All of these are just minor stumbling blocks (and I am not the
first to write about them: I recently found an article, where Mark
Engelberg complained about similar issues in Racket Scheme
compared to Clojure), but they make Guile Scheme as a language
feel less polished than Python.

9.4 A common standard moves more slowly

Some of the issues in Guile Scheme cannot be solved in Guile
itself, because a big part of Guile Scheme is an implementation of
the standardized Scheme language, which allows interoperability
between different Schemes. This has the disadvantage, that
is quite a bit harder to change than a language like Python
which has one reference implementation that leads the language
design, but gives you the advantage that the skills you learn with
one Scheme can be readily adapted for other Schemes, some of
which support vastly different problem-domains, like creating
tiny standalone binaries for embedded platforms.

http://programming-puzzler.blogspot.de/2010/08/racket-vs-clojure.html

9.5. DISTRIBUTING TO OSX AND WINDOWS 85

The shortcoming this creates compared to Python as language
is that many parts of Guile Scheme do not use the advanced
features within Guile to keep interoperability to other Scheme-
implementations.

Also it is harder to create a lean and elegant standard if this
has to be a good fit for multiple implementations with differ-
ent constraints and target groups. Consequently the language-
creation functionality which all the different Schemes need in
the same way is top notch, while the problem-solving can be a
bit cumbersome in comparison to Python.

9.5 Distributing to OSX and Windows

Now we come to the darkest place in Guile development. There is
no readymade plan for distributing programs using Guile Scheme
to platforms without proper package manager.

For Windows, there are patches for relocatable Guile modules,
but these are not yet (as of version 2.0.11) part of the regular
Guile install.

Also there are no solutions to distributing games or similar
artwork-rich programs which use Guile Scheme as implementa-
tion language instead of as extension language. David Thompson
(davexunit) is working on that front with Sly. But easy distribu-
tion looks different.

This also is a problem with Python, which tools like PyIn-
staller only solve partially - for example PyInstaller still requires
me to run OSX to create an installer for MacOSX - but with
GNU Guile it is even more serious.

https://github.com/davexunit/sly
http://pyinstaller.org
http://pyinstaller.org

86 CHAPTER 9. GUILE SCHEME SHORTCOMINGS

I cannot easily give Guile Scheme programs to people who do
not use GNU/Linux, and even for those who do, a fast beta-cycle
to non-developers will be hard to achieve.

This could well be the worst shortcoming for my usecase. I’ll
see how it goes, though. Making Wisp usable directly from the
REPL was remarkably easy, so there might be similarly easy
ways to enable easy testing - if necessary by utilizing autotools
(that’s what I do in wisp).

9.6 Summary

Despite being nice to use most of the time, Guile Scheme has
some severe shortcomings. Most of them stem from having a
much broader focus than Python: not only on solving concrete
problems, but also on tweaking the very core of Guile to make it
better suited for the problem. This leads to a mix of primitive
and sophisticated structures: there is an extremely flexible object
oriented programming system with powerful module methods
next to simplistic list modification structures. There is an efficient
foreign function interface which allows calling into any C library,
but distributing a program written in or with Guile to anything
but a GNU/Linux system with a good package manager is a
nightmare. And no best practices guide to be found.

For some of this, there is limited flexibility due to keeping
compatibility with Scheme code written for other implementa-
tions. But most of these problems can be overcome by lots of
polishing, language design and focussed documentation without
breaking the language.

http://www.gnu.org/software/guile/manual/html_node/Foreign-Function-Interface.html#Foreign-Function-Interface
http://stevelosh.com/blog/2013/09/teach-dont-tell/

9.6. SUMMARY 87

And now, after looking into the dark corners of Guile Scheme,
it is finally time to uncover its sparkling jewelry: Going beyond
Python.

Chapter 10

Guile beyond Python

Where Python takes you on a smooth path from Beginner to
Experienced Programmer, Guile accompanies you far beyond
that, after you cross over its initial bumps.

I am still a beginner of Guile Scheme myself, so I cannot
show you all the ways of taking programing beyond Python with
GNU Guile. That’s why I invited a few experienced Schemers
as guest authors to fill the gap and give you a glimpse into the
vast possibilities Guile offers for programmers.

So in addition to my own experience the next few chapters
will quote from the work of Ludovic Courtes (Ludo), Clinton
(Unknown Lamer), David Thompson (davexunit), Mark Witmer
and Mu Lei (NalaGinrut) to give you an idea of their experience
with using Guile Scheme in fancy ways and taking programming
beyond the limitations of Python.

89

90 CHAPTER 10. GUILE BEYOND PYTHON

We’ll begin with recursion, come to full posix threads and
then go deep into the heart of Guile with programmable syntax,
definition of completely new but interoperable languages, flexi-
ble object oriented programming and definition of control flow
operators with continuations and prompts.

10.1 Recursion

Guile Scheme provides beautiful recursion features along with
full tail recursion. This means, that you can use recursion to
solve problems and have the solution actually look good. Here
is a Guile example (taken from one of my german articles):

1 define : fib n
2 let rek : (i 0) (u 1) (v 1)
3 if {i >= {n - 2}}
4 . v
5 rek {i + 1} v {u + v}

The equivalent Python-Program looks like this:
1 def fib(n):
2 def rek(i=0, u=1, v=1):
3 if i >= n-2:
4 return v
5 return rek(i+1, v, u+v)
6 return rek()

Time to test them. Let’s start with Guile:

http://draketo.de/licht/freie-software/let-rekursion

10.1. RECURSION 91

1 fib 1
2 ; => 1
3 fib 11
4 ; => 89
5 fib 101
6 ; => 573...[18 further numbers]
7 fib 1001
8 ; => 7033...[205 further numbers]

And follow up with Python:
1 fib(1)
2 # => 1
3 fib(11)
4 # => 89
5 fib(101)
6 # => 573...[18 further numbers]
7 fib(1001)
8 # => ... RuntimeError: maximum recursion depth exceeded

OK, so we cannot do this. . .
When we want the Python-code to accept bigger input, we

must convert the recursion to a for-loop (or change the maximum
recursion depth - but that only delays the problem until our
memory dies).

92 CHAPTER 10. GUILE BEYOND PYTHON

1 def fibloop(n):
2 if n in (1, 2):
3 return 1
4 u = 1
5 v = 1
6 for i in range(n-2):
7 tmp = v
8 v = u+v
9 u = tmp

10 return v

This works now. But compared to the beauty of let-recursion
it is damn ugly. You could say, that let-recursion in Scheme is just
syntactic sugar, because tail-recursion simply does this conversion
automatically. But then, “all Turing-complete languages differ
solely in syntactic sugar” (Michele Simionato in The Adventures
of a Pythonista in Schemeland).

Let us finish this by repeating the beautiful Guile code:
1 define : fib n
2 let rek : (i 0) (u 1) (v 1)
3 if {i >= {n - 2}}
4 . v
5 rek {i + 1} v {u + v}

10.2 Exact Math

Where tail recursion lifts limitations in the interaction of func-
tions, exact math lifts limitations for working with numbers. If
you ever stumbled into the limits of floating point precision and
language, compiler and hardware dependent rounding errors,

http://www.phyast.pitt.edu/~micheles/scheme/
http://www.phyast.pitt.edu/~micheles/scheme/

10.2. EXACT MATH 93

you’ll know it as a really dark place, best to be avoided.
I got hit by these issues when doing binomial calculations with

large numbers to estimate the probabilities of finding sufficient
numbers of close neighbors in Freenet. My trusty Python script,
once written to support a forum entry about the probability
that my roleplaying group will have enough people to play, broke
down before 4000 elements with

OverflowError: integer division result too large for a float

normalsize
The reason is simple: There are some intermediate numbers which

are much larger than what Python can represent with a floating point
number.

Knowing that Guile Scheme provides exact numbers, I ported the
script to Guile, and it just worked.

It just worked and used less then 200 MiB of memory - even
though intermediate factorials return huge numbers. And huge means
huge. Guile Scheme effortlessly handled numbers with a size on the
order of 108000. That is 10 to the power of 8000 - a number with 8000
digits.1

Most of the time, such capabilities aren’t needed. But there are
the times when you simply need exact math. And in these situations
Guile Scheme is a lifesaver.

1The ease of using exact math in Guile impressed me so much, that
I wrote an article about my experience: Exact Math to the rescue: http:
//draketo.de/english/exact-math-to-the-rescue

http://draketo.de/english/exact-math-to-the-rescue
http://draketo.de/english/exact-math-to-the-rescue

94 CHAPTER 10. GUILE BEYOND PYTHON

10.3 Real Threads!

Different from Python, Guile uses real operating-system threads.
Where a threaded Python program becomes slower with more proces-
sors due to issues with synchronization between processors, Guile can
fully utilize todays multicore computers.

Starting is really easy: Just use futures. Here’s an example:
1 use-modules : ice-9 futures
2 srfi srfi-1 ; for better iota
3 define : string-append-number l
4 apply string-append : map number->string l
5 let loop ; create a long loop. Guile is ridiculously fast
6 ; with math, so we have to make this expensive
7 ; to see an effect of concurrency.
8 : i : iota 1000
9 when : not : null? i

10 let : : l : iota 1000 1 ; starts at 1
11 let ; worst case: futures in the inner loop.
12 : a : future : string-append-number l
13 b : future : string-append-number : map log l
14 c : future : string-append-number : map sqrt l
15 ; touch gets the result of the future
16 apply string-append : map touch : list a b c
17 loop : cdr i

This code runs at 220% to 240% CPU load on my 4-core machine
(ideal would be 300%) and the runtime decreases by roughly 50%
compared to a strictly sequential program, which is pretty good for a
tight inner loop. Note that with futures Guile automatically uses a
thread pool.

10.4. PROGRAMMING THE SYNTAX AND EMBEDDED
DOMAIN SPECIFIC LANGUAGES 95

10.4 Programming the syntax and embedded
domain specific languages

Due to the integral role syntax adaptions take in Scheme, making an
optimal domain specific language (DSL) with minimal effort while
leveraging all the power of Guile Scheme to form an embedded domain
specific language (EDSL) is just a matter of pattern matching.

Ludovic Courtès describes the benefits of using an EDSL for
packages in GNU Guix in the description for his Fosdem-Talk Growing
a GNU with Guix (video):2

Packages are declared in a high-level fashion, using a
domain-specific language embedded in the Scheme pro-
gramming language. This is the first step in making it
hackable to our eyes: packagers do not even need to know
Scheme to write a package definition, yet the full power
of Scheme, of GNU Guile, and of the Geiser programming
environment is available.
From a programming viewpoint, Guix and the GNU dis-
tribution are just a bunch of "normal" Guile modules,
some of which export "package" objects—one can eas-
ily write Guile code that builds atop the distribution,
customizes it, or otherwise fiddles with packages.

The GNU Guix embedded domain specific language looks like
this:

2Growing a GNU with Guix at FOSDEM 2014: https://fosdem.org/
2014/schedule/event/gnuguix/, video: http://video.fosdem.org/2014/
H1302_Depage/Sunday/Growing_a_GNU_with_Guix.webm

http://savannah.gnu.org/users/civodul
http://arxiv.org/abs/1305.4584
http://arxiv.org/abs/1305.4584
http://gnu.org/s/guix
https://fosdem.org/2014/schedule/event/gnuguix/
https://fosdem.org/2014/schedule/event/gnuguix/
http://video.fosdem.org/2014/H1302_Depage/Sunday/Growing_a_GNU_with_Guix.webm
https://fosdem.org/2014/schedule/event/gnuguix/
https://fosdem.org/2014/schedule/event/gnuguix/
https://fosdem.org/2014/schedule/event/gnuguix/
http://video.fosdem.org/2014/H1302_Depage/Sunday/Growing_a_GNU_with_Guix.webm
http://video.fosdem.org/2014/H1302_Depage/Sunday/Growing_a_GNU_with_Guix.webm

96 CHAPTER 10. GUILE BEYOND PYTHON

1 (define-module (gnu packages which)
2 #:use-module (guix licenses)
3 #:use-module (guix packages)
4 #:use-module (guix download)
5 #:use-module (guix build-system gnu))
6

7 (define-public which
8 (package
9 (name "which")

10 (version "2.20")
11 (source
12 (origin
13 (method url-fetch)
14 (uri (string-append "mirror://gnu/which/which-"
15 version ".tar.gz"))
16 (sha256
17 (base32 (string-append
18 "1y2p50zadb36izzh2zw4dm5hvd"
19 "iydqf3qa88l8kav20dcmfbc5yl")))))
20 (build-system gnu-build-system)
21 (home-page "https://gnu.org/software/which/")
22 (synopsis "Find full path of shell commands")
23 (description (string-join
24 "which is a program that prints the full paths"
25 "of executables on a system."))
26 (license gpl3+)))

This realizes a similar goal as ebuild files for Gentoo, but where
the ebuild files are run with a specialized scriptrunner providing
domain-specific functionality, Guix packages are just standard Scheme
code and can be used directly from Guile Scheme. Compare the above
package definition with this ebuild and the Manifest needed for it:

http://gentoo.org

10.5. NEW READERS: CREATE LANGUAGES WITH
COMPLETELY DIFFERENT SYNTAX 97

1 # Copyright 1999-2014 Gentoo Foundation
2 # Distributed under the terms of the GNU General Public License v2

1 ...
2 DIST which-2.20.tar.gz 135372 SHA256 d417b... WHIRLPOOL 35ca3...
3 ...
4 SIGNATURE
5 ...

Note: I (the author of the book) am a longterm Gentoo user.
For details on adapting the Syntax in GNU Guile, see Syntax-Rules

in the Guile reference manual.

10.5 New Readers: Create languages with
completely different syntax

Guile allows defining new languages with completely different syntax
and using them in concert with the existing languages in Guile. Ex-
amples include Javascript, Emacs Lisp and Wisp at the REPL. Guile
realizes this by defining new readers: The first processing step in
parsing code. But there are usages apart from just making it possible
to use popular languages inside Guile.

Multi-Language interface definitions

As a really cool example which highlights the potential of extending
the reader to solve real-life challenges, Mark Witmer, author of guile-
xcb, describes his experience from implementing asynchronous X11-
bindings by directly using the XML definition files as library - which
as task description sounds almost unreal. But let’s give him the stage:

https://www.gnu.org/software/guile/manual/html_node/Syntax-Rules.html
http://www.markwitmer.com/guile-xcb/guile-xcb.html
http://www.markwitmer.com/guile-xcb/guile-xcb.html

98 CHAPTER 10. GUILE BEYOND PYTHON

Guile-XCB is a library that provides Scheme bindings for the X11
protocol, the foundational layer of graphical user interfaces in most
Unix-like operating systems.

The X11 protocol is a format for sending messages back and forth
between a client that uses graphics and input devices, and a server
that manages the hardware. These messages are defined in a very long
and detailed English-language document. That raises the question:
what is the easiest way to turn this document into working code?

Some clever and dedicated people created a set of XML files that
describe the binary format used in the core protocol and many of
its extensions. This is the heart of the XCB (X protocol C-language
Bindings) project. To make a C library that uses the XML files, they
wrote a Python library that reads the XML files in and spits out C
code and header files.

Things are a little different in Guile-XCB. Thanks to Guile’s
support for new language implementations, the XML files themselves
are source code for a language that compiles down to the same object
code format that regular Guile programs use. No need for a separate
Python script or complicated non-standard build logic.

The entry point to defining the new language is in the module
(language xml-xcb spec) and looks like this:

1 (define-language xml-xcb
2 #:title "xml-xcb"
3 #:reader custom-read
4 #:compilers ‘((scheme . ,compile-scheme))
5 #:make-default-environment make-default-environment
6 #:printer write)

The procedure custom-read turns XML into s-expressions using
the built-in sxml library and the procedure compile-scheme runs
through the expression and generates record types for all the requests,
replies, and complex data types that are defined in the XML files.

10.5. NEW READERS: CREATE LANGUAGES WITH
COMPLETELY DIFFERENT SYNTAX 99

All that’s needed to compile an XML file is this command at the
terminal:

1 guild compile xproto.xml --from=xml-xcb --output=xproto.go

With the help of a few modules that handle X connections and
send and receive requests and replies, Guile-XCB turns the XML files
into modules that you can load just like any other Guile modules,
without any FFI or C-language bindings.

Developing new programming languages

A more experimental usage of reader extensions is development of
completely new languages - or reviving old languages by giving them
access to the full capabilities of GNU Guile. As a practical example,
Mu Lei aka NalaGinrut describes his experience with implementing a
simple math language: Simple, but not so simple.3

This article is about the front-end only: lexer and parser,
and transforming a simple AST (actually it’s a list type
in Scheme) to another kind of AST, tree-il, the first level
of Guile intermediate language. After the tree-il was
generated, the rest of the compiling work would be taken
by Guile.
So we don’t have to face the complicated compiling op-
timization stuffs. This feature makes it very easy to
implement new languages in Guile.
. . . Simple, but not so simple . . .

3Simple, but not so simple is a blog post about implementing a new
language in Guile with 50 lines of code: http://nalaginrut.com/archives/
2014/04/15/simple,-but-not-so-simple

https://github.com/NalaGinrut
http://nalaginrut.com/archives/2014/04/15/simple,-but-not-so-simple
http://nalaginrut.com/archives/2014/04/15/simple,-but-not-so-simple
http://nalaginrut.com/archives/2014/04/15/simple,-but-not-so-simple
http://nalaginrut.com/archives/2014/04/15/simple,-but-not-so-simple
http://nalaginrut.com/archives/2014/04/15/simple,-but-not-so-simple

100 CHAPTER 10. GUILE BEYOND PYTHON

’simple’ is just a simple language, maybe too simple for
a serious compiler writer. Formally even a front-end
would take you a lot of time and hack power. Not to
mention the backend. Fortunately, Guile provides a nice
way to let language fans focus on the grammar rather
than optimization. Nevertheless, all the language front-
ends can call from each other, If you’re interested in this
feature, please read Wingo’s post on Ecmacript in Guile,
and inter calling between Ecmascript and Scheme.4, 5

10.6 Your own object oriented programming
system

The Guile Object Oriented Programming System (GOOPS) in Guile
allows changing the OOP system to your liking. For example Clinton
aka Unknown Lamer did some quite nifty OOP experiments with
Guile. As a first stop he suggests having a look at serialize.scm, which
contains “some grade A GOOPS abuse”:

Multimethods? The meta-object protocol allowing you
to mold the object system to your needs?

4in the post ecmascript for guile Andy Wingo explains in fun and
approachable style how to run (strictly written) JavaScript in Guile and
access Guile features from Javascript: http://wingolog.org/archives/
2009/02/22/ecmascript-for-guile

5Using the ECMAscript language in Guile allows executing (clean)
Javascript while retaining the full power of Scheme, including all functionality
written in other Guile languages. To experiment with it, start a recent Guile
(2.0.11 or newer) as guile --language=ecmascript. This enables us to do
this: require("srfi.srfi-1").iota(10, 5, 7); – ftagn.

http://wingolog.org/archives/2009/02/22/ecmascript-for-guile
http://wingolog.org/archives/2009/02/22/ecmascript-for-guile
http://unknownlamer.org
http://unknownlamer.org
http://unknownlamer.org/darcsweb/browse?r=guile-web;a=headblob;f=/src/serialize.scm
http://wingolog.org/archives/2009/02/22/ecmascript-for-guile
http://wingolog.org/archives/2009/02/22/ecmascript-for-guile
http://wingolog.org/archives/2009/02/22/ecmascript-for-guile

10.7. CONTINUATIONS AND PROMPTS 101

Using GOOPS, you can define your own object systems!
Who wouldn’t want to change the fundamental behavior
of the language ;)

Compared to the complexities of adjusting Pythons object-system,
this allows going outside the usual realm with ease - with mixins
instead of inheritance being just one of the simplest applications. And
when an often-used definition gets cumbersome, you can simply utilize
macros to make it convenient again.

10.7 Continuations and prompts

In the chapter One way to do it? I complained, that solving tasks in
a multitude of ways in Scheme makes it harder to read code. Now it’s
time to turn this around: Guiles delimited continuations via prompts
allow implementing advanced control structures in an efficient and
elegant way. By default Guile uses them for Exception handling via
throw and catch, but much more is possible.

One example for those structures are coroutines: Functions which
cooperatively share processor time by stopping their execution at given
points and deferring to another function, until that other function
passes control back to the original function.

Many words for a simple concept: In Sly you can define the
movement of a character as follows:

http://wingolog.org/archives/2010/02/26/guile-and-delimited-continuations
https://www.gnu.org/software/guile/manual/html_node/Prompts.html
http://www.gnu.org/software/guile/manual/html_node/Exceptions.html#Exceptions
https://gitorious.org/sly/sly/

102 CHAPTER 10. GUILE BEYOND PYTHON

1 use-modules : 2d agenda
2 2d coroutine
3 2d game
4

5 coroutine
6 while #t
7 walk ’up
8 wait game-agenda 60
9 walk ’down

10 wait game-agenda 60

In short: walk up, then defer to the function game-agenda and
ask it to pass back control to the coroutine-code 60 seconds later.
When game-agenda passes control back to the coroutine, walk down
and pass back control to the game-agenda.

If I wanted to do something similar in Python, I would have to
create an iterator which is called by the game-agenda and yields the
time to wait after every step. I’d then have to run every function by
passing it as argument to the game-agenda (this is a generalization of
what the Python game library pyglet does for scheduling).

Guile does not have this limitation. A function can actually call
another function to defer its control flow to that other function. “Hey
game agenda, it’s your turn now. Please pass control back to me in
60 seconds”. And that allows using programming constructs easily
which are a hassle to use with Python.

10.8 Summary

Guile Scheme provides functionality which makes it easy for every
programmer to go far beyond the limitations of Python.

While elegant recursion support and real threads provide incre-
mental improvements over Python, redefinitions of the syntax and

http://pyglet.org

10.8. SUMMARY 103

concepts from object oriented programming allow shaping the lan-
guage into something very different. To go even further, continuations
and prompts make it possible to create completely new control flow
paradigms without ever exiting from Scheme.

There is no need to wait for something like the new yield from
keyword in Python 3.3: In GNU Guile you can add such new control
flow operators yourself, as the example of Sly shows, and have them
integrated in the language just as nicely as all the constructs from
the mainainers of GNU Guile. And with this, you can turn it into
the perfect solution for the task you want to solve. GNU Guile gives
programmers a freedom similar to that which users gain from running
free software: Independence from the language designer. If something
does not behave as you need it to, you can fix it without having to
switch to a new system.

And you do all this in the language you also use for general
programming. There is little need for mental context switches while
you are working. No matter whether you write a simple string-
processor or modify the very core of your programming environment:
You are always using GNU Guile.

http://www.joelonsoftware.com/articles/fog0000000022.html

Part IV

Conclusions

105

Chapter 11

Guile Scheme is coming
back

While Python is a good choice for new programmers, thanks to
providing a complete set of functionality for any kind of task, encoded
in a minimal set of highly polished basic concepts using very readable
syntax, the structures of Python are almost stretched to their limit and
extensions like list comprehensions make it more and more complicated
for newcomers to understand code from others. This makes Python
yet another example for Greenspuns 10th Rule:

Every sufficiently complex application/language/tool will
either have to use Lisp or reinvent it the hard way.

Guile Scheme on the other hand has a higher barrier of entry and
suffers from some rough edges. But when actually doing a comparison
between Guile and the strongest points of Python, Guile looks quite
good. It does not have the one best way to do it, which Python

107

http://c2.com/cgi/wiki?GreenspunsTenthRuleOfProgramming

108 CHAPTER 11. GUILE SCHEME IS COMING BACK

touts, but that’s part of the reason why I started looking into Guile
Scheme. Scaling a program from a first draft to a big application
looks easier with Guile, and while the parentheses look odd at first,
it’s extensions for infix-math and for indentation-based syntax make
it a better choice for pseudocode than Python. Its standard library is
much smaller than the batteries of Python, but that is partially made
up for by offering an easier way to call C-libraries.

There are some severe shortcomings, though. Some come from
pursuing two goals at the same time: Language design and solving
problems. This leads to a mix of low-level, high-level and deprecated
concepts baked into the language on equal footing - as well as some
baggage from compatibility to the Scheme-standard which does not
allow using Guiles advanced features like easy keyword-arguments
throughout. And there is no best practices guide to be found. The
other huge challenge is deploying a guile-based program to platforms
which do not have a decent package manager.

But these shortcomings are more than compensated by its
strengths. Let-recursion (named let) is not only a testament to
the elegance of recursion, but also to the reward for letting program-
mers define the building blocks of their language as they use them -
from basic tools like elegant loop structures up to generic functions,
exception handling, coroutines and boundless other possibilities. And
new readers allow providing all these capabilities to new languages
for specialized tasks - like parsing XML files to implement protocols
directly from specifications as done in guile-xcb.

Last, but not least, direct access to real threads (and consequently
also truly concurrent futures) provides crucial capabilities in the cur-
rent times in which even mobile phones come with multiple processors.

As a related note, learning Scheme with The Little Schemer made
understanding C++ Template recursion as for example described
in “Modern C++ design” (my latest reading) a breeze. So even if

109

you don’t expect to be using Scheme to solve problems in real life, I
can wholeheatedly recommend learning it to get an understanding of
the possibilities programming can offer beyond Python. I expect to
see more and more of its features turn up in other languages, so, if
nothing else, learning Scheme will be a very worthwhile investment
to prepare for the future of your favorite language.

And when it comes to Scheme, GNU Guile is a very good choice
which already showed that it can withstand the onslaught of time
which pushed so many other languages and systems into oblivion.
GNU Guile already had many different maintainers, and it is likely that
it will keep being improved in the forseeable future – similar to GNU
Emacs, which is still moving forward after 30 years of development.
GNUs may not always be the fastest movers, but they sure are
stubborn - and that’s a very good quality to have in the core of our
systems.

To sum this up, there’s nothing better than the well-known quote
from Victor Marie Hugo:

Nothing is as powerful as an idea whose time has come.

Keep an eye on Guile Scheme: It is coming back.

Part V

Appendix

111

Appendix A

See also

A.1 Tools, Projects, Articles

• GNU Guile

• Guile Basics

• wingolog

• chaos code with scheme

A.2 Recommended Reading

• The Little Schemer, The Reasoned Schemer and The Seasoned
Schemer by MIT Press.

• sicm with guile-sicm (exploring classical mechanics with Scheme):
http://www.cs.rochester.edu/~gildea/guile-scmutils/

113

http://gnu.org/s/guile
http://draketo.de/proj/guile-basics/
http://wingolog.org/
http://www.nalaginrut.com/archives/2014/03/27/a-way-to-write-shit-with-you-elegant-scheme-language
http://www.cs.rochester.edu/~gildea/guile-scmutils/

Appendix B

Glossary

Terms used by Schemers.

• Procedure: Function.

• Parens: Parentheses (round brackets)

• Thunk: One block of code. Enclosed by parens.

• Body: All the forms in a procedure.

• Form: Something which appears in a body: A definition or an
expression.

• Definition: A form which starts with (define.

• Expression: Any form which can appear in the function body
which is not a definition. See R4RS for the clear definition.

• RnRS: Revision n Report for Scheme

• SRFI: Scheme Request for Implementation (spelled as “surfie”).
Like PEP.

115

http://www.cs.indiana.edu/scheme-repository/R4RS/r4rs_6.html

Appendix C

Solution Map

C.1 File as Module and Script

In Python you use a runtime switch with magic variables at the
bottom:

1 if __name__ == "__main__":
2 # your code
3 pass

In Guile Scheme you use shell deferring at the top:

117

118 APPENDIX C. SOLUTION MAP

1 #!/bin/sh
2 # -*- scheme -*-
3 exec guile -e main -s "$0" "$@"
4 # Thanks to exec, the following lines
5 # are never seen by the shell.
6 !#
7 (define (main args)
8 (display "Hello World!"))

C.2 Output a datastructure to console to put
it in the interpreter

In Python you use print and paste the result into the shell:
1 print [1, 2, 3]

1 print eval("[1, 2, 3]")

In Scheme you use write and paste the result into a (quote ...)
form:

1 (write ’(1 2 3))
2 (newline)

1 (write (with-input-from-string "(1 2 3)" read))

Both versions have corner cases, but work well for many situations.
For custom classes Python requires defining a __repr__ or __str__
function which returns a string that can be eval()’ed to the same
class.

C.3. HELP IN INTERPRETER 119

C.3 help in interpreter

In Python you call help(...)
1 help(help)

In Guile Scheme you also call (help ...)

1 (help help)

Note: (help help) does not work within orgmode, so I pasted
the results from the REPL by hand.

C.4 Profiling

In Python you can use python -m profile -s cumtime path/to/file.py
or timeit:

1 import timeit
2 print timeit.timeit("1 + 1", number=1000000)

In Guile Scheme you can use =,profile= in the interpreter. For fast
calls you need to use a loop. Alternatively you can use the statprof
module:

1 use-modules : statprof
2 with-statprof #:loop 1000000
3 + 1 1

It starts with a laudation for Python,
the first programming language I
loved.

In my first years of programming I
thought that I’d never need anything
else.

‘Beyond Python.’
Then it dives into Guile Scheme.

Where Python takes you on a smooth
path from Beginner to Experienced
Programmer, Guile accompanies you
far beyond after you cross over its ini-
tial bumps.

Join me on my path into Guile.

[SC4]

Cover Illustration by Michael Gil and Martin Grabmüller •

	Contents
	My story
	Into Python
	And beyond

	Python
	The Strengths of Python
	Pseudocode which runs
	One way to do it
	Hackable, but painfully
	Batteries and Bindings
	Scales up

	Limitations of Python
	The warped mind
	Templates condemn a language
	Python syntax reached its limits
	Complexity is on the rise
	Time to free myself

	Guile Scheme
	Starting into Guile Scheme
	But the (parens)!
	Summary
	Comparing Guile Scheme to the Strengths of Python
	Pseudocode
	General Pseudocode
	Consistency
	Pseudocode with loops
	Summary

	One way to do it?
	Planned Hackablility, but hard to discover…
	Accessing variables inside modules
	Runtime Self-Introspection
	freedom: changing the syntax is the same as regular programming
	Discovering starting points for hacking

	Batteries and Bindings: FFI
	Does it scale up?
	Positional arguments and keyword arguments
	Different ways to import modules
	identifier-syntax: getters and setters for variables
	Adapting the syntax to the problem
	Good practice is needed! (but not enforced)

	Summary

	Guile Scheme Shortcomings
	creating languages and solving problems
	car and cdr: Implementation details in the language
	Inconsistency, overhead, duplication
	A common standard moves more slowly
	Distributing to OSX and Windows
	Summary

	Guile beyond Python
	Recursion
	Exact Math
	Real Threads!
	Programming the syntax and embedded domain specific languages
	New Readers: Create languages with completely different syntax
	Multi-Language interface definitions
	Developing new programming languages

	Your own object oriented programming system
	Continuations and prompts
	Summary

	Conclusions
	Guile Scheme is coming back

	Appendix
	See also
	Tools, Projects, Articles
	Recommended Reading

	Glossary
	Solution Map
	File as Module and Script
	Output a datastructure to console to put it in the interpreter
	help in interpreter
	Profiling

